B NTNU | sioncindrecnoivay

Operating Systems

Lecture 14: Input and output

Michael Engel

Resources

« So far we considered:
- CPU
* main memory
* |n the next lecture
* background storage Processor
 Today: I/O devices

!

R
_ I/0
ranrercy| [[o
.

/10
interfaces

storage

@ NTNU | sanetandrecnoiogy Operating Systems 14: Input and output

I/O device interfacing

f;/\
8 FEEE Fere FREe EEE
T FE B
" LE]y e) G £
tC B el
G o W1 i I el
AlE |~ b 1 o
Keyboard
controller

@ NTNU

|

CPU

‘ Norwegian University of
Science and Technology

v

|

Video
controller

I

Bus

Power a

Collision

Disk Ethernet
controller controller

main memory
(RAM)

I I

Input/output devices are
connected to the system bus
via a controller.

They are programmed using
I/O registers in the controllers.

Operating Systems 14: Input and output

Example: PC keyboard

e Serial communication, character oriented

« Keyboards are "intelligent" (have their own processor)
' > 4

EJ
|)
-HWE“..HIHH.E! =

= PP PPl ek)
e e —

Control codes * * Make and break codes
e.g. for LEDs indicate pressed/released

Tasks of the software: keys

« Initialization of the keyboard
controller

controller
 Fetch characters from the /
keyboard :
The controller signals an

* Map the make and break
codes to ASCII interrupt as soon as a

» Send command (e.g. for character is available
switching LEDs)

@ NTNU | sanetandrecnoiogy Operating Systems 14: Input and output

Example: CGA video controller

« Communication via video signal
« analog: VGA, digital: DVI, HDMI, DisplayPort

« Transformation of the contents of the frame buffer (screen
memory) into a picture (e.g. 80x25 character matrix or bitmap)

Video signal, e.g.: RGB, CGA video controller
Intensity, VSync, HSync ofx T 79

control and
status regs. |24 frame buffer *
1

.

\Tasks of the software:

Initialization of the controller
Set and switch video modes
Fill frame buffer with content
Control the cursor position
Enable/disable the cursor

@ NTNU | sanetandrecnoiogy Operating Systems 14: Input and output

v

Example: IDE disk controller

e Communication via AT commands
« Blockwise random access to data blocks

AT commands
» Calibrate disk drive

* Read/write/verify block

el e IDE disk controller

Position disk read/write head

* Diagnosis
» Configure disk parameters
Sector
buffer
| __y control and
' status regs.

Data blocks
(512 bytes each)

The disk controller
e T e - signals an interrupt as
rite AT commands to registers
Filllempty sector buffer soon as the sector
React to interrupts buffe!’ has been read
Error handling or written

@ NTNU | sanetandrecnoiogy Operating Systems 14: Input and output 6

Tasks of the software:

Example: Ethernet controller

« Serial packet-based bus communication
« Packets have variable size and contain addresses:

preamble+SFD | destination | source type data CRC
l 0-1500 bytes
Ethernet |
PPPPP £ controller Interrupt after
°°°°°°°° the completion
gather of each operation
DMA
Bus
Tasks of the software:
Scatter

* Provide data and buffers

* Initialize controller registers
» React to interrupts

« Error handling

Norwegian University of
Science and Technology

@ NTNU

Memory access via
scatter/gather bus
master DMA

main memory
(RAM)

Operating Systems 14: Input and output 7

Device classes

« Character devices
« Keyboard, printer, modem, mouse, ...
« Usually only sequential access, rarely random access
 Block devices
« Hard disk, CD-ROM, DVD, tape drives, ...
« Usually blockwise random access
« Other devices don't fit this scheme easily, such as
 (GP)GPUs (especially 3D acceleration)

* Network cards (protocols, addressing, broadcast/multicast,
packet filtering, ...)

« Timer (sporadic or periodic interrupts)

@ NTNU | sanetandrecnoiogy Operating Systems 14: Input and output

Interrupts

« ...signal the software to become active

Interrupt processing sequence

on hardware level
Software can disable

IRQ handling
For x86: 1. Device has completed operating
sti — enable 3. CPU confirms — ("interrupt request”, IRQ)
cli — disable start of interrupt Interrupt

handling controller <

("acknowledge") | | o

| B CEEE EREE 1/ .
Sausad auz

2. Controller signals
interrupt request

Bus

4. Controller communicates the number of the interrupt
("interrupt vector") to the CPU

@ NTNU | sanetandrecnoiogy Operating Systems 14: Input and output 9

Direct Memory Access (DMA) ...

* is used by complex controllers to transfer data from and to main
memory independent of the CPU

DMA transfer sequence

1. CPU configures 4 AC ;
DMA controller DMA A Disk

controller controller
addrests : data
coun
) A buffer
control |
g main memory
2. DMA controller & 5 5.\ transfer (RAM)
requests data
Interrupt
when all is done

Bus

Steps 2., 3. and 4. are
repeated count times

@ NTNU | sanetandrecnoiogy Operating Systems 14: Input and output 10

/O address space

» Access to controller registers and controller memory depends
on the system architecture

two address spaces one address space two address spaces
memory
OxFtFff I I
I/O ports
0 [1 []

(a) (b) (c)

(a) Separate 1/0O address space

« accessible using special machine instructions
(b) Shared address space (memory mapped I/0O)
(c) Hybrid architecture

@ NTNU | sanetandrecnoiogy Operating Systems 14: Input and output

Device drivers

« Depending on the device, I/O can be performed via
* Polling ("programmed 1/O"),
* Interrupts or
- DMA

« Example: Printing a page of text

Modern Operating Systems

Source: Tanenbaum,

String to
User be printed
space l Printed Printed
page page
ABCD l l
EFGH
Next A Next 4 AB
Kernel Y Y
space ABCD ABCD
EFGH EFGH
(a) (b) (c)

@ NTNU | sanetandrecnoiogy Operating Systems 14: Input and output

Polling ("programmed |/O")

... Implies active waiting for an 1/O device

/* Copy character into kernel buffer p */
copy_from user (buffer, p, count);

/* Loop over all characters */
for (i=0; i<count; 1i++) {

/* Wait “actively” until printer is ready */
while (*printer_status reg != READY),;

Pseudo code of an
operating system
function to print text
} using polling

/* Print one character */
*printer_data reg = pl[i];

return_to user ();

@ NTNU | sanetandrecnoiogy Operating Systems 14: Input and output 3

Interrupt-driven 1/O

... implies that the CPU can be allocated to another process while
waiting for a response from the device

copy_from user (buffer, p, count); if (count > 0) {
/* Enable printer interrupts */ *printer_data reg = pl[i];
enable_interrupts (); count--;
1++;
/* Wait until printer is ready */
while (*printer_status _reg != READY),; } else {
/* Print first character */ unblock user ();
*printer_data reg = p[i++];
Y
scheduler (); acknowledge interrupt ();
return_to_user (); return_from_interrupt ();
Code to initiate the 1/O operation Interrupt handler

@ NTNU | sanetandrecnoiogy Operating Systems 14: Input and output 14

DMA-driven I/O

... the CPU is no longer responsible for transferring data between
the 1/0O device and main memory

* further reduction of CPU load

copy_from user (buffer, p, count);

set up DMA controller (p, count); acknowledge interrupt ();

scheduler (); unblock user ();

return_to _user (), return_from_interrupt ();
Code to initiate the 1/0 operation Interrupt handler

@ NTNU | sanetandrecnoiogy Operating Systems 14: Input and output 15

Discussion: Interrupts

« Saving the process context
» Partly performed directly by the CPU
* e.g. saving status register and return address

« minimal required functionality

« All modified registers have to be saved before and restored
after the end of interrupt processing

* Keep interrupt processing times short
« Usually other interrupts are disabled while an interrupt
handler is executed
* Interrupts can get lost

« If possible, the OS should only wake up the process that
was waiting for the /O operation to finish

@ NTNU | sanetandrecnoiogy Operating Systems 14: Input and output 16

Discussion: Interrupts (2)

 Interrupts are the source for asynchronous behavior
« (Can cause race conditions in the OS kernel
* Interrupt synchronization

« Simple approach: disable interrupts "hard" while a critical
section is executed

 Xx86: instructions sti and cli
« Again, interrupts could get lost

* In modern systems, interrupts are realized using multiple
stages. These minimize the amount of time spent with
disabled interrupt

« UNIX: top half, bottom half
 Linux: Tasklets
 Windows: Deferred Procedures

@ NTNU | sanetandrecnoiogy Operating Systems 14: Input and output 17

Discussion: Direct Memory Access

e Caches

 Modern processors use data caches
DMA bypasses the cache!

« Before a DMA transfer is configured, cache contents must
be written back to main memoy and the cache invalidated

e Some processors support non-cachable address ranges
for 1/O operations

« Memory protection

 Modern processors use a MMU to isolate processes from
each other and to protect the OS itself
DMA bypasses memory protection!

« Mistakes setting up DMA transfers are very critical

« Application processes can never have direct access to
program the DMA controller!

@ NTNU | sanetandrecnoiogy Operating Systems 14: Input and output 18

Tasks of the OS

Create device abstrations
« Uniform, simple, but versatile
Provide I/O primitives
« Synchronous and/or asynchronous
Buffering
 If the device or the receiving process are not yet ready
Device control
» As efficient as possible considering mechanical device properties
Handle resource allocation
« For multiple access devices: which process may read/write where?
* For single access devices: time-limited reservation
Manage power saving modes
Support plug&play

@ NTNU | sanetandrecnoiogy Operating Systems 14: Input and output 19

Layers of the I/O system

1/O
Layer / reply /O functions
/O User processes X Make I/O call; format 1/O; spooling
request _*i *
Device-independent : : : : :
| coftware * Naming, protection, blocking, buffering, allocation
I
Device drivers A Set up device registers; check status

Interrupt handlers Wake up driver when 1/O completed

o

Hardware Perform |/O operation

Source: Tanenbaum, "Modern Operating Systems"

@ NTNU | sanetandrecnoiogy Operating Systems 14: Input and output 20

Unix device abstractions

« Peripheral devices are realized as special files

« Devices can be accessed using read and write operations in
the same way as regular files

« Opening special files creates a connection to the respective
device provided by the device driver

» Direct access to the driver by the user

« Block oriented special files (block devices)
« Disk drives, tape drives, floppy disks, CD-ROMs

« Character oriented special files (character devices)
« Serial interfaces, printers, audio channels etc.

@ NTNU | sanetandrecnoiogy Operating Systems 14: Input and output 21

Unix device abstractions (2)

« Devices are uniquely identified by a tuple:
* device type
« Dblock or character device
* major device number
» selects one specific device driver
 minor device number

« selects one of multiple devices controlled by the device
driver identified by the major number

@ NTNU | sanetandrecnoiogy Operating Systems 14: Input and output

22

Unix device abstractions (3)

« Partial listing of the /dev directory that by convention holds the
special files:

brw-rw---- me disk 3, 0 2008-06-15 14:14 /dev/hda

brw-rw---- me disk 3, 64 2008-06-15 14:14 /dev/hdb

brw-r----- root disk 8, 0 2008-06-15 14:13 /dev/sda

brw-r----- root disk 8, 1 2008-06-15 14:13 /dev/sdal

Crw-rw---- root uucp 4, 64 2006-05-02 08:45 /dev/ttySO

Crw-rw---- root 1p 6, 0 2008-06-15 14:13 /dev/1p0

Crw-rw-rw- root root 1, 3 2006-05-02 08:45 /dev/null

lrwxrwxrwx root root 3 2008-06-15 14:14 /dev/cdrecorder -> hdb
lrwxrwxrwx root root 3 2008-06-15 14:14 /dev/cdrom -> hda

P\

access owner and major and

permissions —group minor 1D modification name of the
C: character device date&time special file
b: block device
1: link

@ NTNU | sanetandrecnoiogy Operating Systems 14: Input and output

Unix access primitives

A quick overview... (see the man pages for details...)

int open(const char *devname, 1int flags)
« "opens" a device and returns a file descriptor
off t lseek(int fd, off t offset, int whence)

« Positions the read/write pointer (relative to the start of the
file) — only for random access files

ssize t read(int fd, void *buf, size t count)

« Reads at most count bytes from descriptor fd into buffer
buf

ssize t write(int fd, const void *buf, size t count)
« Writes count bytes from buffer buf to file with descriptor fd
int close(int fd)

« "closes" a device. The file descriptor fd can no longer be
used after close

@ NTNU | sanetandrecnoiogy Operating Systems 14: Input and output

24

Unix device specific functions

« Special properties of a devices are controlled via ioct1:

IOCTL(2) Linux Programmer's Manual IOCTL(2)

NAME
ioctl - control device

SYNOPSIS
#include <sys/ioctl.h>

int ioctl(int d, int request, ...);

« Generic interface, but device-specific semantics:

CONFORMING TO
No single standard. Arguments, returns, and semantics of
ioctl(2) vary according to the device driver in question
(the call 1is used as a catch-all for operations that
don't cleanly fit the Unix stream I/0 model). The ioctl
function call appeared in Version 7 AT&T Unix.

@ NTNU | sanetandrecnoiogy Operating Systems 14: Input and output

25

Unix: waiting for multiple devices

« So far, we have encountered blocking read and write calls

« What can we do if we need to read from several sources
(devices, files) at the same time?

« Alternative 1: non-blocking input/output
« Passthe 0 NDELAY flag to the open() system call

» Polling operation: the process has to call read () repeatedly
until data arrives

« Suboptimal solution that wastes CPU time

@ NTINU | Sowegian riversiy of Operating Systems 14: Input and output 26

Science and Technology

Unix: waiting for multiple devices (2)

« Alternative 2: blocking wait for multiple file descriptors

« System call:
int select (int nfds, fd _set *readfds, fd _set *writefds,
fd set *errorfds, struct timeval *timeout);

« nfds defines the maximum file descriptor which select should

consider
- ..fds indicates the file descriptors to wait on:
« readfds — wait on these until data is available
« writefds — ...until data can be written
« errorfds —...until an error is signaled

« timeout defines the time at which select unblocks if no other
event occurred

« Macros are provided to create the file descriptor sets

* Result of select: the descriptor sets only contain those
descriptors which resulted in the deblocking of the call

@ NTNU | sanetandrecnoiogy Operating Systems 14: Input and output

Buffering of I/O operations

* Problem if an operating system does not provide data buffers:

« Data which arrives before a corresponding read operation is
executed (e.g. keyboard input) would get lost/discarded

 If an output device is busy, write would either fail or block
the process until the device is ready again

« A process executing an I/O operation cannot be swapped

operating system user process
4) 4)
/O read b
device
- J - J

a) read operation without buffering

@ NTNU | sanetandrecnoiogy Operating Systems 14: Input and output 28

Single 1/O buffers

« Read

 The OS can accept data even if the reader process has not
executed read yet

* For block devices, a subsequent block can already be prefetched
 The process can now be swapped, DMA writes to a buffer
* Write

« Data is copied, the caller does not block. Data buffers in the user
address space can immediately be reused

operating system user process
4) 4)
/O read move b
device
. J . J

b) read operation with single buffering

@ NTNU | sanetandrecnoiogy Operating Systems 14: Input and output

Single 1/O buffers

* Read

Performance estimation

* A simple back-of-the envelope calculation gives an indication of the 2d
. performance increase when repeatedly reading blockwise with
subsequent processing:

Duration of the read operation ar
Compute time required for processing

Duration of the copy process (system buffer—user process)
Overall time required for reading and processing a block

W= O

Without buffer: Bo=T+C
With buffer: BeE=max(T,C)+ M

For T=C und M= 0, Bo = 2-Be. Unfortunately, M > 0

b) read operation with single buffering

@ N'TINU | Sorwegian University of Operating Systems 14: Input and output 30

Science and Technology

Double 1/O buffering

« Read

« While data is transferred from the 1/O device to one of the
buffers, the contents of the other buffer can be copied into
the user address space

 Write

« While data is transferred from one of the buffers to the I/O
device, the contents of the other buffer can already be
refilled with data from the process address space

operating system user process
(-) 4)
[
/O read //r move
E— /o —_—
device
° ¢
\Z / . J

c) read operation with double buffering

@ NTNU | sanetandrecnoiogy Operating Systems 14: Input and output 3

Double 1/O buffering

e Read

Performance estimation)

A double buffer enables to execute a read operation in parallel to a copy
operation and processing

Without buffer: Bo=T+C
With buffer: BeE=max(T,C)+ M
With double buffer: Be =max (T, C + M)

If C+ M < T, the device could be utilized to 100%

g &

c) read operation with double buffering

@ NTINU | Sowegian riversiy of Operating Systems 14: Input and output 32

Science and Technology

I/O ring buffers

« Read

« Multiple (many) data blocks can be buffered, even if the
reading process does not call read fast enough

 Write

* A writer process can execute multiple write calls without
being blocked

operating system user process

] 4)
/O read l move b
device ‘_
A _ J

@ NTNU

Norwegian University of
Science and Technology

d) read operation with ring buffer

Operating Systems 14: Input and output

Discussion: 1/O buffers

I/O buffers decouple the |/O operations of user processes from
the device driver

* This enables to handle an increased rate of I/O requests for
a short duration

* In the long run, no amount of buffers can avoid a blocking
of processes (or the loss of data)

Buffers create overhead
« Management of the buffer structure
e Space in memory
« Time required for copying
In complex systems data can be buffered multiple times
« Example: between layers of network protocols
* Avoid if possible!

@ NTNU | sanetandrecnoiogy Operating Systems 14: Input and output

34

Device control example: disk

* Driver has to consider mechanical properties!

« Disk drivers usually queue multiple requests
« The order of request execution can increase efficiency
« The time required to process a request consists of:
» Positioning time: depends on current position of the disk head arm
* Rotational delay: time until the sector passes by the read/write head
* Transfer time: time required to transfer the data

. Optllrnlz.atlo_n criterium: Tracks Rotatllon axis o 4irite
positioning time \ =¥/ heads
Sector 'ﬂ_ PR

@ NTINU | Sowegian riversiy of Operating Systems 14: Input and output 35

Science and Technology

I/O scheduling: FIFO

* Process requests in order of their arrival (first in first out)

« Reference sequence (sequence of track numbers):
98, 183, 37, 122, 14, 124, 65, 67

 Current track: 53

0 14 37 53 6567 98 122124 183 199
| | [l | L |

« Total number of track changes: 640

« Large movements of the disk arm:
long average processing time!

@ NTNU | sanetandrecnoiogy Operating Systems 14: Input and output

I/O scheduling: SSTF

* The request with the shortest processing time is prioritized
(shortest seek time first)

« Same reference sequence

« (Assumption: positioning time proportional to track distance)

0 14 37 53 6567 98 122124 183 199
I I [l I L I

« Total number of track changes: 236
« Similar to SJF scheduling, SSTF can also lead to starvation!
« still not optimal

@ NTNU | sanetandrecnoiogy Operating Systems 14: Input and output 37

I/O scheduling: Elevator

 Move the disk arm in one direction until no more requests are
available (elevator scheduling)

« Same reference sequence
(assumption: head moves in direction 0)

0 14 37 53 6567 98 122124 183 199
I I L I L I

« Total number of track changes: 208
* New requests executed without additional positioning time
* No starvation, but long waiting times are possible

@ NTNU | sanetandrecnoiogy Operating Systems 14: Input and output

38

Discussion: I/O scheduling today

« Disks are "intelligent" devices

« Physical properties are hidden (logical blocks)

« Disks have huge caches

« Solid State Disks no longer contain mechanical parts
+ 1/0O-scheduling slowly loses relevance

« Success of a given strategy is more difficult to predict

* Nevertheless, I/O scheduling is still very important
« CPU speeds increase further, disk speeds do not

* Linux currently implements two different variants of the
elevator algorithm (+ FIFO for "disks" without positioning time):

« DEADLINE: prioritizes read requests (shorter deadlines)

« COMPLETE FAIR: all processes get an identical fraction of
the 1/0 bandwidth

@ NTNU | sanetandrecnoiogy Operating Systems 14: Input and output

39

Conclusion

« 1/O hardware comes in very many different variants
« sometimes difficult to program
« The "art" of designing an OS consists of...
« nevertheless defining uniform and simple interfaces
 using the hardware efficiently
« maximizing CPU and I/O device utilization

« The availability of a large number of device drivers is extremely
important for the success of an operating system

« Device drivers are by far the largest subsystem in Linux and
Windows

@ NTNU | sanetandrecnoiogy Operating Systems 14: Input and output 40

