
Operating Systems
Lecture 14: Input and output

Michael Engel

Operating Systems 14: Input and output 2

Resources
• So far we considered:

• CPU
• main memory

• In the next lecture
• background storage

• Today: I/O devices

Processor
(CPU)

main memory
(RAM)

I/O
interfaces

I/O
devices

secon-
dary

storage

2

Operating Systems 14: Input and output 3

I/O device interfacing

Keyboard
controller

Video
controller

CPU
main memory

(RAM)

Bus

Disk
controller

Ethernet
controller

Input/output devices are
connected to the system bus
via a controller.
They are programmed using
I/O registers in the controllers.

Operating Systems 14: Input and output 4

Example: PC keyboard
• Serial communication, character oriented

• Keyboards are "intelligent" (have their own processor)

Tasks of the software:
• Initialization of the

controller
• Fetch characters from the

keyboard
• Map the make and break

codes to ASCII
• Send command (e.g. for

switching LEDs)

Make and break codes
indicate pressed/released
keys

Control codes
e.g. for LEDs

The controller signals an
interrupt as soon as a
character is available

⚡
keyboard
controller

Operating Systems 14: Input and output 5

Example: CGA video controller
• Communication via video signal

• analog: VGA, digital: DVI, HDMl, DisplayPort
• Transformation of the contents of the frame buffer (screen

memory) into a picture (e.g. 80x25 character matrix or bitmap)

Tasks of the software:
• Initialization of the controller
• Set and switch video modes
• Fill frame buffer with content
• Control the cursor position
• Enable/disable the cursor

CGA video controllerVideo signal, e.g.: RGB,
Intensity, VSync, HSync

control and
status regs.

A B C …

:
:

frame buffer

0
0

24

791 2

Operating Systems 14: Input and output 6

Example: IDE disk controller
• Communication via AT commands

• Blockwise random access to data blocks
AT commands
• Calibrate disk drive
• Read/write/verify block
• Format track
• Position disk read/write head
• Diagnosis
• Configure disk parameters

Tasks of the software:
• Write AT commands to registers
• Fill/empty sector buffer
• React to interrupts
• Error handling

IDE disk controller

control and
status regs.

Sector
buffer

⚡
The disk controller
signals an interrupt as
soon as the sector
buffer has been read
or written

Data blocks
(512 bytes each)

Operating Systems 14: Input and output 7

Example: Ethernet controller
• Serial packet-based bus communication

• Packets have variable size and contain addresses:

Tasks of the software:
• Provide data and buffers
• Initialize controller registers
• React to interrupts
• Error handling

Interrupt after
the completion
of each operation

main memory
(RAM)

Bus

scatter

gather
DMA

Ethernet
controller

⚡

Memory access via
scatter/gather bus
master DMA

preamble+SFD destination source type CRCdata ………………

0–1500 bytes

Operating Systems 14: Input and output 8

Device classes
• Character devices

• Keyboard, printer, modem, mouse, ...
• Usually only sequential access, rarely random access

• Block devices
• Hard disk, CD-ROM, DVD, tape drives, ...
• Usually blockwise random access

• Other devices don’t fit this scheme easily, such as
• (GP)GPUs (especially 3D acceleration)
• Network cards (protocols, addressing, broadcast/multicast,

packet filtering, ...)
• Timer (sporadic or periodic interrupts)
• ...

Operating Systems 14: Input and output 9

Interrupts
• …signal the software to become active

Interrupt
controller

CPU

Bus

Software can disable
IRQ handling
For x86:
sti → enable
cli → disable

Interrupt processing sequence
on hardware level

3. CPU confirms
 start of interrupt
 handling
 ("acknowledge")

1. Device has completed operating
 → ("interrupt request", IRQ)

2. Controller signals
 interrupt request

4. Controller communicates the number of the interrupt
 ("interrupt vector") to the CPU

Operating Systems 14: Input and output 10

Direct Memory Access (DMA) ...
• is used by complex controllers to transfer data from and to main

memory independent of the CPU

DMA transfer sequence

CPU

Bus

main memory
(RAM)

DMA
controller

Disk
controller

address

count

control

⚡
Steps 2., 3. and 4. are
repeated count times

1. CPU configures
DMA controller

4. ACK

2. DMA controller
requests dataInterrupt

when all is done

3. Data transfer

data
buffer

Operating Systems 14: Input and output 11

I/O address space
• Access to controller registers and controller memory depends

on the system architecture

(a) Separate I/O address space

• accessible using special machine instructions
(b) Shared address space (memory mapped I/O)
(c) Hybrid architecture

two address spaces two address spacesone address space

(a) (b) (c)

memory

0

0xffffffff

I/O ports

Operating Systems 14: Input and output 12

Device drivers
• Depending on the device, I/O can be performed via

• Polling ("programmed I/O"),
• Interrupts or
• DMA

• Example: Printing a page of text

S
ou

rc
e:

 T
an

en
ba

um
,

M
od

er
n

O
pe

ra
tin

g
S

ys
te

m
s

Operating Systems 14: Input and output 13

Polling ("programmed I/O")
... implies active waiting for an I/O device

/* Copy character into kernel buffer p */
copy_from_user (buffer, p, count);

/* Loop over all characters */
for (i=0; i<count; i++) {

 /* Wait “actively” until printer is ready */
 while (*printer_status_reg != READY);

 /* Print one character */
 *printer_data_reg = p[i];
}

return_to_user ();

Pseudo code of an
operating system
function to print text
using polling

Operating Systems 14: Input and output 14

Interrupt-driven I/O
... implies that the CPU can be allocated to another process while
waiting for a response from the device

copy_from_user (buffer, p, count);

/* Enable printer interrupts */
enable_interrupts ();

/* Wait until printer is ready */
while (*printer_status_reg != READY);

/* Print first character */
*printer_data_reg = p[i++];

scheduler ();
return_to_user ();

if (count > 0) {

 *printer_data_reg = p[i];
 count--;
 i++;

} else {

 unblock_user ();

}
acknowledge_interrupt ();
return_from_interrupt ();

Code to initiate the I/O operation Interrupt handler

Operating Systems 14: Input and output 15

DMA-driven I/O
... the CPU is no longer responsible for transferring data between
the I/O device and main memory
• further reduction of CPU load

copy_from_user (buffer, p, count);
set_up_DMA_controller (p, count);
scheduler ();
return_to_user ();

acknowledge_interrupt ();
unblock_user ();
return_from_interrupt ();

Code to initiate the I/O operation Interrupt handler

Operating Systems 14: Input and output 16

Discussion: Interrupts
• Saving the process context

• Partly performed directly by the CPU
• e.g. saving status register and return address
• minimal required functionality

• All modified registers have to be saved before and restored
after the end of interrupt processing

• Keep interrupt processing times short
• Usually other interrupts are disabled while an interrupt

handler is executed
• Interrupts can get lost

• If possible, the OS should only wake up the process that
was waiting for the I/O operation to finish

Operating Systems 14: Input and output 17

Discussion: Interrupts (2)
• Interrupts are the source for asynchronous behavior

• Can cause race conditions in the OS kernel
• Interrupt synchronization

• Simple approach: disable interrupts "hard" while a critical
section is executed
• x86: instructions sti and cli
• Again, interrupts could get lost

• In modern systems, interrupts are realized using multiple
stages. These minimize the amount of time spent with
disabled interrupt
• UNIX: top half, bottom half
• Linux: Tasklets
• Windows: Deferred Procedures

Operating Systems 14: Input and output 18

Discussion: Direct Memory Access
• Caches

• Modern processors use data caches
DMA bypasses the cache!

• Before a DMA transfer is configured, cache contents must
be written back to main memoy and the cache invalidated
• Some processors support non-cachable address ranges

for I/O operations
• Memory protection

• Modern processors use a MMU to isolate processes from
each other and to protect the OS itself
DMA bypasses memory protection!

• Mistakes setting up DMA transfers are very critical
• Application processes can never have direct access to

program the DMA controller!

Operating Systems 14: Input and output 19

Tasks of the OS
• Create device abstrations

• Uniform, simple, but versatile
• Provide I/O primitives

• Synchronous and/or asynchronous
• Buffering

• If the device or the receiving process are not yet ready
• Device control

• As efficient as possible considering mechanical device properties
• Handle resource allocation

• For multiple access devices: which process may read/write where?
• For single access devices: time-limited reservation

• Manage power saving modes
• Support plug&play
• ...

Operating Systems 14: Input and output 20

Layers of the I/O system

Source: Tanenbaum, "Modern Operating Systems"

Operating Systems 14: Input and output 21

Unix device abstractions
• Peripheral devices are realized as special files

• Devices can be accessed using read and write operations in
the same way as regular files

• Opening special files creates a connection to the respective
device provided by the device driver

• Direct access to the driver by the user

• Block oriented special files (block devices)
• Disk drives, tape drives, floppy disks, CD-ROMs

• Character oriented special files (character devices)
• Serial interfaces, printers, audio channels etc.

Operating Systems 14: Input and output 22

Unix device abstractions (2)
• Devices are uniquely identified by a tuple:

• device type
• block or character device

• major device number
• selects one specific device driver

• minor device number
• selects one of multiple devices controlled by the device

driver identified by the major number

Operating Systems 14: Input and output 23

Unix device abstractions (3)
• Partial listing of the /dev directory that by convention holds the

special files:

brw-rw---- me disk 3, 0 2008-06-15 14:14 /dev/hda
brw-rw---- me disk 3, 64 2008-06-15 14:14 /dev/hdb
brw-r----- root disk 8, 0 2008-06-15 14:13 /dev/sda
brw-r----- root disk 8, 1 2008-06-15 14:13 /dev/sda1
crw-rw---- root uucp 4, 64 2006-05-02 08:45 /dev/ttyS0
crw-rw---- root lp 6, 0 2008-06-15 14:13 /dev/lp0
crw-rw-rw- root root 1, 3 2006-05-02 08:45 /dev/null
lrwxrwxrwx root root 3 2008-06-15 14:14 /dev/cdrecorder -> hdb
lrwxrwxrwx root root 3 2008-06-15 14:14 /dev/cdrom -> hda

c: character device
b: block device
l: link

access
permissions

owner and
group

major and
minor ID modification

date&time
name of the
special file

Operating Systems 14: Input and output 24

Unix access primitives
A quick overview... (see the man pages for details...)
• int open(const char *devname, int flags)

• "opens" a device and returns a file descriptor
• off_t lseek(int fd, off_t offset, int whence)

• Positions the read/write pointer (relative to the start of the
file) – only for random access files

• ssize_t read(int fd, void *buf, size_t count)

• Reads at most count bytes from descriptor fd into buffer
buf

• ssize_t write(int fd, const void *buf, size_t count)

• Writes count bytes from buffer buf to file with descriptor fd
• int close(int fd)

• "closes" a device. The file descriptor fd can no longer be
used after close

Operating Systems 14: Input and output 25

Unix device specific functions
• Special properties of a devices are controlled via ioctl:

• Generic interface, but device-specific semantics:

IOCTL(2) Linux Programmer's Manual IOCTL(2)

NAME
 ioctl - control device

SYNOPSIS
 #include <sys/ioctl.h>

 int ioctl(int d, int request, ...);

CONFORMING TO
 No single standard. Arguments, returns, and semantics of
 ioctl(2) vary according to the device driver in question
 (the call is used as a catch-all for operations that
 don't cleanly fit the Unix stream I/O model). The ioctl
 function call appeared in Version 7 AT&T Unix.

Operating Systems 14: Input and output 26

Unix: waiting for multiple devices
• So far, we have encountered blocking read and write calls

• What can we do if we need to read from several sources
(devices, files) at the same time?

• Alternative 1: non-blocking input/output
• Pass the O_NDELAY flag to the open() system call
• Polling operation: the process has to call read() repeatedly

until data arrives
• Suboptimal solution that wastes CPU time

Operating Systems 14: Input and output 27

Unix: waiting for multiple devices (2)
• Alternative 2: blocking wait for multiple file descriptors

• System call:
int select (int nfds, fd_set *readfds, fd_set *writefds,
 fd_set *errorfds, struct timeval *timeout);

• nfds defines the maximum file descriptor which select should
consider

• …fds indicates the file descriptors to wait on:
• readfds — wait on these until data is available
• writefds — …until data can be written
• errorfds — …until an error is signaled

• timeout defines the time at which select unblocks if no other
event occurred

• Macros are provided to create the file descriptor sets
• Result of select: the descriptor sets only contain those

descriptors which resulted in the deblocking of the call

Operating Systems 14: Input and output 28

Buffering of I/O operations
• Problem if an operating system does not provide data buffers:

• Data which arrives before a corresponding read operation is
executed (e.g. keyboard input) would get lost/discarded

• If an output device is busy, write would either fail or block
the process until the device is ready again

• A process executing an I/O operation cannot be swapped

I/O
device

operating system user process

read

a) read operation without buffering

Operating Systems 14: Input and output 29

Single I/O buffers
• Read

• The OS can accept data even if the reader process has not
executed read yet

• For block devices, a subsequent block can already be prefetched
• The process can now be swapped, DMA writes to a buffer

• Write
• Data is copied, the caller does not block. Data buffers in the user

address space can immediately be reused

I/O
device

operating system user process

move

b) read operation with single buffering

read

Operating Systems 14: Input and output 30

Single I/O buffers
• Read

• The OS can accept data even if the reader process has not
executed read yet

• For block devices, a subsequent block can already be prefetched
• The process can now be swapped, DMA writes to a buffer

• Write
• Data is copied, the caller does not block. Data buffers in the user

address space can immediately be reused

I/O
device

operating system user process

move

b) read operation with single buffering

read

Performance estimation

A simple back-of-the envelope calculation gives an indication of the
performance increase when repeatedly reading blockwise with
subsequent processing:

T: Duration of the read operation
C: Compute time required for processing
M: Duration of the copy process (system buffer→user process)
B: Overall time required for reading and processing a block

Without buffer: B0 = T + C
With buffer: BE = max (T, C) + M

For T ≈ C und M ≈ 0, B0 ≈ 2·BE. Unfortunately, M > 0

Operating Systems 14: Input and output 31

Double I/O buffering
• Read

• While data is transferred from the I/O device to one of the
buffers, the contents of the other buffer can be copied into
the user address space

• Write
• While data is transferred from one of the buffers to the I/O

device, the contents of the other buffer can already be
refilled with data from the process address space

I/O
device

operating system user process

move

c) read operation with double buffering

read

Operating Systems 14: Input and output 32

Double I/O buffering
• Read

• While data is transferred from the I/O device to one of the
buffers, the contents of the other buffer can be copied into
the user address space

• Write
• While data is transferred from one of the buffers to the I/O

device, the contents of the other buffer can already be
refilled with data from the process address space

I/O
device

operating system user process

move

c) read operation with double buffering

read

Performance estimation

A double buffer enables to execute a read operation in parallel to a copy
operation and processing

Without buffer: B0 = T + C
With buffer: BE = max (T, C) + M
With double buffer: BE = max (T, C + M)

If C + M < T, the device could be utilized to 100%

Operating Systems 14: Input and output 33

I/O ring buffers
• Read

• Multiple (many) data blocks can be buffered, even if the
reading process does not call read fast enough

• Write
• A writer process can execute multiple write calls without

being blocked

I/O
device

operating system user process

moveread

d) read operation with ring buffer

Operating Systems 14: Input and output 34

Discussion: I/O buffers
• I/O buffers decouple the I/O operations of user processes from

the device driver
• This enables to handle an increased rate of I/O requests for

a short duration
• In the long run, no amount of buffers can avoid a blocking

of processes (or the loss of data)
• Buffers create overhead

• Management of the buffer structure
• Space in memory
• Time required for copying

• In complex systems data can be buffered multiple times
• Example: between layers of network protocols
• Avoid if possible!

Operating Systems 14: Input and output 35

Device control example: disk
• Driver has to consider mechanical properties!
• Disk drivers usually queue multiple requests

• The order of request execution can increase efficiency
• The time required to process a request consists of:

• Positioning time: depends on current position of the disk head arm
• Rotational delay: time until the sector passes by the read/write head
• Transfer time: time required to transfer the data

• Optimization criterium:
positioning time

Rotation axisTracks

Sector

Read/write
heads

Operating Systems 14: Input and output 36

I/O scheduling: FIFO
• Process requests in order of their arrival (first in first out)

• Reference sequence (sequence of track numbers):
98, 183, 37, 122, 14, 124, 65, 67

• Current track: 53

• Total number of track changes: 640
• Large movements of the disk arm:

long average processing time!

Operating Systems 14: Input and output 37

I/O scheduling: SSTF
• The request with the shortest processing time is prioritized

(shortest seek time first)
• Same reference sequence
• (Assumption: positioning time proportional to track distance)

• Total number of track changes: 236
• Similar to SJF scheduling, SSTF can also lead to starvation!
• still not optimal

Operating Systems 14: Input and output 38

I/O scheduling: Elevator
• Move the disk arm in one direction until no more requests are

available (elevator scheduling)
• Same reference sequence

(assumption: head moves in direction 0)

• Total number of track changes: 208
• New requests executed without additional positioning time
• No starvation, but long waiting times are possible

Operating Systems 14: Input and output 39

Discussion: I/O scheduling today
• Disks are "intelligent" devices

• Physical properties are hidden (logical blocks)
• Disks have huge caches
• Solid State Disks no longer contain mechanical parts

• I/O-scheduling slowly loses relevance
• Success of a given strategy is more difficult to predict

• Nevertheless, I/O scheduling is still very important
• CPU speeds increase further, disk speeds do not

• Linux currently implements two different variants of the
elevator algorithm (+ FIFO for "disks" without positioning time):
• DEADLINE: prioritizes read requests (shorter deadlines)
• COMPLETE FAIR: all processes get an identical fraction of

the I/O bandwidth

Operating Systems 14: Input and output 40

Conclusion
• I/O hardware comes in very many different variants

• sometimes difficult to program
• The "art" of designing an OS consists of...

• nevertheless defining uniform and simple interfaces
• using the hardware efficiently
• maximizing CPU and I/O device utilization

• The availability of a large number of device drivers is extremely
important for the success of an operating system
• Device drivers are by far the largest subsystem in Linux and

Windows

