B NTNU | sioncindrecnoivay

Operating Systems

Lecture 13: Real-time scheduling

Michael Engel



Real-time computer systems

« What's this all about?

,A real-time computer system is a computer
system in which the correctness of the system
behavior depends not only on the logical results
of the computations, but also on the physical
instant at which these results are produced.”

Hermann Kopetz [1]

@ NTNU | S oy Operating Systems 13: Real-time scheduling



Example:

Real-time
computer
system

"Inverted pendulum”

Objective: angle « should be = 0°

protractor
= angle
stimuli measurement :‘ i

o disturbance

timely motor
reaction (actor)

controlled object

The reaction time of the computer system (time passing between
stimulus and reaction) and its variation ("jitter") should be minimized

@ NTNU | S oy Operating Systems 13: Real-time scheduling 3



Deadlines

« Often defined by the technical system to be controlled

« Deadline classification:

« soft: the obtained result (the reaction of the system) is
useful even if it was obtained after the deadline has passed

* firm: the result is useless after the deadline has passed

* hard: if the deadline passes without a system reaction,
damage can occur

« Areal-time system is considered "hard" if at least one of its
deadlines is hard. Otherwise, the system is "soft"

« For hard real-time systems, it has to be guaranteed that all
deadlines are kept. This requires different development
approaches and system structures.

@ NTNU | S oy Operating Systems 13: Real-time scheduling



How long does a program run?

« Runtimes of programs vary due to:
 different inputs
* hardware states when the program starts
 interrupts, process switching, power management, ...

The estimated WCETEesT

Distribution of has to be guaranteed
execution times larger or equal to the real
WCET.
BCET WCET

However, the difference
t between the two should be
as small as possible ("tight

BCETggr WCETgqr bounds")

« Especially relevant: Worst Case Execution Time (WCET)

@ NTNU | S oy Operating Systems 13: Real-time scheduling 5



Trigger
... to initiate computation ("task") can be realized in different ways:

 Event-triggered real-time systems

* Arelevant change of the state of the controlled object (an
event) was observed via sensor readings

« Scheduling of the tasks at runtime
« High overhead for tests under high load
« Behavior is difficult to predict — soft real-time systems

@ NTNU | S oy Operating Systems 13: Real-time scheduling



Trigger

... to initiate computation ("task") can be realized in different ways:

« Time-triggered real-time systems

Fixed points in time to execute calculations are planned in
advance (offline scheduling). Their execution is periodic

Resource utilization is higher than with event-triggered
systems, since the calculation always has to consider the
worst case execution time (WCET)

High energy consumption since the system is permanently
active

Lower test effort required
Guarantees are possible — hard real-time systems

@ NTNU | S oy Operating Systems 13: Real-time scheduling



Example: OSEKtime

Objectives of the OSEKtime OS [2]:

« Safe realization of "x-by-wire" applications, e.g. fly-by-wire,
steer-by-wire, brake-by-wire, eGas

» Guaranteed predictable behavior
e support for time-triggered applications

— OSEKtime operating system specification
(version 1.0: 2001)

» Global coordination of embedded control units (ECUs):
* global time!
— FTCom specification
« Compatibility with "classical" OSEK-OS tasks
« Support for event-driven applications

@ NTNU | S oy Operating Systems 13: Real-time scheduling

Scienc



OSEKtime scheduler

« Offline scheduling :
« Adispatch table controls the periodic activation of tasks:

 period 1 . period 2 ' period 3

I I i

| | |

| |
SN .

0 5000 10000 15000  time (in ps)

Task Starting time “——___Dispatch table the for example.

E ;888 Ez A complete pass through the
T3 4000 ps table is called dispatcher round
T4 5000 ps

* The dispatcher is invoked by a timer interrupt
* Only the dispatcher can activate tasks
« Safety mechanism: deadline monitoring

@ NTNU | S oy Operating Systems 13: Real-time scheduling



Offline scheduling

» Tools support developers when scheduling tasks at design time

*. DECOMSYS: VIEWER V2 0.0

Flo View Help

Tasks

Houts
| | T

Links
El‘ [cantaiks> = e =]

-Fle-ﬂayTo:bMa:l« J0

-n«um_nna»,ham.mn_n’n_m-.m_nuz = mom omomomomomomomomomomom o

Proscseresimimme o e S S S S S S o S oo oo T
PickFestvahd FlesfieyT stkMaste 700 Slavel 2000

PickFestVald_FlesRapT ackMaster 700 LimpHome 2000 e e

PucdFustVald_Flofey] stkMaster_700 SlaveZ 0= = o oS-SS oo oo oo oo

i || 1 ‘l ll I

!'wn.;w.:-.._roso

!Ioe.urwm:lu 2050

.Ium.au.a._cm

CANT sckMauter_4050
-ngnr Master_1700
== e
o v 1 —
SlavelHost Slyve1Contsolier — B | B i |
R RN RN NN _ -
Shvgla slngml- —_ | [EEEE N
Pofs] Tascaeinps | ( w 00 1200 16 %0 a0, | 20 = T 00 40 @,
oov.sc.oemo iy o | | [ LD LO0CCLELCECCEECOE T ECEECE O P ©o [[rar |
212 57 [0 [Masted MasterCortroler [

TimeCoré

@ NTNU | S oy Operating Systems 13: Real-time scheduling 10



Real-time scheduling

* Objective:
obtain guarantees that hard deadlines are kept
« Taxonomy of scheduling approaches [3, chapter 6]:

real-time scheduling

hard deadlines soft deadlines

periodic aperiodic

preemptive non-preemptive preemptive non-preemptive

static dynamic static dynamic static dynamic static dynamic

@ NTNU | S oy Operating Systems 13: Real-time scheduling 11



Rate-monotonic scheduling (RM)

real-time schedulin

soft deadlines

aperiodic

preemptive /non-preemptive preemptive non-preemptive

static dynamic static dynamic static dynamic

« Rate-monotonic (RM) scheduling is a scheduling strategy for
preemptive, periodic tasks with hard deadlines

« The scheduler works at runtime (using fixed priorities)

@ NTNU | S oy Operating Systems 13: Real-time scheduling

12



RM assumptions (Liu & Layland 1973 [4])

A1. All tasks are preemptible at any time
Preemption costs (duration) are negligible

A2. Only compute time is a relevant resource
The overhead for memory, I/O accesses and other resources
IS negligible

A3. All tasks are independent
There is no required order of execution between tasks

A4. All tasks are periodic

A5. The relative deadline of a task is equal to its period

@ NTNU | S oy Operating Systems 13: Real-time scheduling 13



Example: car headlight controller

...everything is periodic!

« For each task 7=(C;, Ti) we know its WCET C; and period T,
but not its phase ¢

= Stepper motor

Indicators: control:
« 5= (1,500) e 74=(1,5)

Status Control Network

messages: messages: management:

«71=(2,20) «72=(2,10) « 3= (4,50)

. -
CAN bus

@ NTNU | S oy Operating Systems 13: Real-time scheduling 14



RM algorithm

« The priority grows monotonously with the event rate (=frequency)

e Thus: short period — high priority

« Tasks with high priority preempt tasks
with low priority

A practical implementation of
RM scheduling requires only
an operating system with a
preemptive fixed priority

* Example: scheduler
Gantt diagram for ¢ = 0
Motor 5ms Il - h - - I
Control 10 ms —- I_- I_-
Status 20 ms ——— . I—_
Managemed0 ms CT T 17—
Indicator 500 ms [
* 0 1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 1¢ 15 16 117 | 18 19 | 20 21 @22 | 23 24
Period il Deadline according to period T; time in ms
@ NTNU | S oy Operating Systems 13: Real-time scheduling 15



Schedulability analysis

* Question: are the deadlines kept for all tasks?

« The schedule can only be calculated if all tasks are completely
time-triggered. In our example, the phases can have arbitrary
values

* Necessary condition: the utilization U of the system is less than
or equal to 1:

Assumption: Uniprocessor

i C
g T U: system load

m: number of tasks

. Example: 71 = (1,5), 72= (2,20), 3= (2,10), 74= (4,50), 75 = (1,500)

m

C. 1 L2.4 1 But... is this
U= Z?_E 20 10 50 500_0 582=<1 sufficient?

i=1

@ NTNU | S oy Operating Systems 13: Real-time scheduling 16



The “70% rule” [4]

Rule: no deadline violations if the following condition holds:

1/m U: system load
USm'(Z _1) m: number of tasks

« Forlarge values of m, this converges against
In(2) = 0,6931, i.e. ca. 70% o
Tip: apply

« Advantage: simple test, low overhead L'Hépital's rule
« Example 1: U=58.2%, m=5 v
« m-(2Vm-1) = 74.35%, condition fulfilled — no deadline violation
« Example 2: 1 =(2,5) instead of 1 = (1,5), thus U=78.2%,m=5
« m-(27m-1) = 74.35%, condition not fulfilled
— possible deadline violation
« Disadvantage: no conclusion if the condition is not fulfilled

@ NTNU | S oy Operating Systems 13: Real-time scheduling 17



Sufficient and necessary conditions

« Sufficient condition positive * Necessary condition negative
.+ eg. Usm-(2""-1) + e.g. U<1 does not hold
« Schedule is valid « Schedule is invalid
valid schedule invalid schedule
S e Y L EE T LT TP >

Increasing
» complexity of
sufficient necessary the task set

Better schedulability tests required

|deal case is an "exact test": sufficient and necessary condition

@ NTNU | S oy Operating Systems 13: Real-time scheduling 18



Exact test: response time analysis [5]

 If the response time R, for all tasks is less
than or equal to the period T;, all deadlines

are kept Vie(l,..,m):R<T,
« For the largest possible delay ¢; = 0:

All higher prioritized tasks are ready at the
start of the period

Condition (necc. and suff.):

¢, =0 . b, =2 , b, =1 .
Toska I S S T S S S S D e e e
s ¢,=0 " O !
R, =12 | R, =11 R,=10
e Calculate R;: Ix.  "Interference" — delay caused by
tasks with higher priority
R, hpx: indexes of the tasks that have a
R,-=Ci+I,-=C,-+OZ T C; higher priority than task x
jEhp | ~ J [x]:rounding up to next integer

@ NTNU | S oy Operating Systems 13: Real-time scheduling 19



Exact test: iterative solution

- Calculate R;using fixed point iteration:
- Terminate if R"+" = R or R,-”+1 > T;

fz+1_C. + Z

JEhp,

* Pseudo code of the tests for all tasks:

for (eachtask 7i) {

I =0
do {
R =1+ (Cj
if (R > Ti) return false // deadline violation
I = R
I

} while (I + Ci > R)
}

return true // all deadlines are kept

@ NTNU | S oy Operating Systems 13: Real-time scheduling



Rate-monotonic scheduling is "optimal”

« We need to show: |RM is an optimal scheduling algorithm for fixed
priorities. l.e., if any algorithmus can find a
valid schedule, RM can also find one.

* Proof by contradiction: we assume... ~(A=B)=AA-B

algorithm A finds a valid schedule, but RM does not
« In schedule A: prio(zj) = prio(zj) + 1 and T; > T; (different to RM)

Ci+C; < T, holds since the schedule is valid
and z; has a higher priority

cC C

J

Task ri— % h

Task rj\—_ j_

Y
T
y

@ NTNU | S oy Operating Systems 13: Real-time scheduling 21



Rate-monotonic scheduling is "optimal”

« We need to show: |RM is an optimal scheduling algorithm for fixed
priorities. l.e., if any algorithmus can find a
valid schedule, RM can also find one.

« Proof by contradiction: we assume... ~(A=B)=AA-B

algorithm A finds a valid schedule, but RM does not
« In schedule A: prio(zj) = prio(zj) + 1 and T; > T; (different to RM)

Ci+C; < T; holds since the schedule is valid and z; has a higher priority
What is the effect of swapping the priorities (only) of these two tasks?

7j can be scheduled, since it now has higher priority

zi can also be scheduled since C,-+Cj < Tj <T;
C

¥
Task r g =
Taskr.—— —

Y

© NTNU | Qfgwsegf:d%”;zﬁ;sgfggj Operating Systems 13: Real-time sche:’(;uling 22



Rate-monotonic scheduling is "optimal”

RM is an optimal scheduling algorithm for fixed
priorities. l.e., if any algorithmus can find a
valid schedule, RM can also find one.

 We need to show:

« Proof by contradiction: we assume... ~(A=B)=AA-B
algorithm A finds a valid schedule, but RM does not

« In schedule A: prio(zj) = prio(zj) + 1 and T; > T; (different to RM)
Ci+C; < T; holds since the schedule is valid and z; has a higher priority

What is the effect of swapping the priorities (only) of these two tasks?
7j can be scheduled, since it now has higher priority

7i can also be scheduled since CiCj< Tj< T;

We obtain an RM schedule by applying a finite number of these swaps
This is also a valid schedule — conftradiction - RM is optimal!

@ NTNU | S oy Operating Systems 13: Real-time scheduling 23



RM scheduling: conclusion

« RMis easy to apply and optimal for fixed priorities

« the OS only needs to provide a "fixed priority" scheduler
 Response time analysis enables an exact schedulability test

« Important for hard real-time systems: mathematical guarantee!
* In many cases, the 70% rule is sufficient

e Attention: A

e Assumptions A.1-5 must hold!
e uniprocessor, no task dependencies, ...
« WCET estimation difficult for modern processors

* memory hierarchies, out-of-order execution,
DRAM access times, ...

* |In any case, the complete system has to be analyzed

@ NTNU | S oy Operating Systems 13: Real-time scheduling 24



Example: Earliest Deadline First

real-time scheduling

hard deadlines

soft deadlines

aperiodic

LN
Gon-preemptive preemptive\ non-preemptive

» \ / N

static jc/ static dynamic ‘static dynamic

static dynamic

« Earliest Deadline First (EDF) scheduling is a scheduling
strategy for preemptive, periodic and aperiodic tasks with hard
deadlines. The priorities are assigned dynamically (at runtime).

@ NTNU | S oy Operating Systems 13: Real-time scheduling



EDF algorithm

_ _ In general, deadlines
« Tasks which are ready are sorted in are specified as

order of their absolute deadlines relative times

 If the first task in the list has an earlier deadline than the currently
running task, the running task is preempted immediately!

. Process name Arrival CPU burst 10 burst Deadline
Example:
Process1 0 10 3 33
Process2 4 3 5 24
Process3 5 10 3-5 24
Process1 C T T T 1 T T T 1T 1T
Process? CT—1T— =
Process3 —_

0 1 2 3 4 5 6 7 8 9 |10 |11 |12 |13 |14 |15 |16 |17 |18 |19 |20 | 21 | 22 | 2

@ NTNU | S oy Operating Systems 13: Real-time scheduling 26



Optimality of EDF

EDF minimizes the maximum delay of tasks
delay 1

Task 1 11 #‘ —
Task 2 NN ﬁ

CT T T T T 17—
Task 3 delay 2
0 1 2 %) 4 5 6 7 8 9 |10 {11 |12 |13 |14 |15 |16 |17 |18 (19 |20 |21 | 22
no delay

 |If a schedule exists which is able to keep all deadlines, then
EDF also keeps all deadlines — EDF is optimal

« ...for independent tasks with dynamic priorities

« Especially for periodic tasks the following holds:
If U <1, then EDF always finds a valid schedule

(without missing deadlines!)
Proof in [6]

@ NTNU | S oy Operating Systems 13: Real-time scheduling

27



EDF-Scheduling: Conclusion

« Simply optimal for periodic as well as aperiodic task sets

» Achieves a higher utilization than RM scheduling by using
dynamic priorities

 Attention: A

 EDF is usually only implemented in special real-time
operating systems

 No information about the number and duration of deadline
misses can be obtained

» Less predictable than e.g. RM
 Response times can vary significantly: "jitter"
* In overload situations: "domino effect"

@ NTNU | S oy Operating Systems 13: Real-time scheduling 28



Outlook: Extending the strategies

« Working with sporadic tasks

« Limited arrival rate, but no strict period
« Consideration of task dependencies
* |Increase CPU utilization

* mixed-criticality systems

 restriction to "harmonic tasks"

« periods are integer multiples of each other

 Modus changes

* e.g. indicator/stepper motor becomes active
 Handle [temporary] overload
« Adaptation to [heterogeneous] multiprocessor systems

@ NTNU | S oy Operating Systems 13: Real-time scheduling 29



References

[1] Kopetz, Hermann: Real-Time Systems: Design Principles for Distributed
Embedded Applications (2nd. ed.). Springer Publishing Company, Inc., 2011.
https://doi.org/10.1093/comjnl/29.5.390

[2] Automotive Open System Architecture — http://www.autosar.org

[3] Peter Marwedel. 2021. Embedded System Design: Embedded Systems
Foundations of Cyber-Physical Systems (4th ed.). Springer Publishing
Company, Incorporated. Open access: https://www.springer.com/gp/book/
9783030609092

[4] C.L.LiuandJ.W. Layland. 1973. Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment. J. ACM20, 1 (January
1973), 46-61. DOI=http://dx.doi.org/10.1145/321738.321743

[5] M. Joseph and P. Pandya. 1986. Finding response times inreal-time
systems, BCS Computer Journal, 29 (5): 390-395,
DOIl=https://doi.org/10.1093/comjnl/29.5.390

[6] G. C. Buttazzo. Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications. Kluwer Academic Publishers, USA,
1997

@ NTNU | S oy Operating Systems 13: Real-time scheduling 30


https://www.springer.com/gp/book/9783030609092
https://www.springer.com/gp/book/9783030609092

