B NTNU | sioncindrecnoivay

Operating Systems

Lecture 12: Uniprocessor scheduling

Michael Engel

Processes once again...

Processes are (still...) the central abstraction for activities in
current operating system

* illusion of independent sequential control flows as a concept
(sequence of CPU and |/O bursts)

 inreal life, the CPU is multiplexed

Unix systems provide a set of system calls to create and
manage processes and to provide communication channels

 in addition, modern operating systems also support light-
and featherweight processes

Processes are controlled by the operating system
 allocation of resources
« preemption of resources

@ NTNU | S oy Operating Systems 12: Uniprocessor scheduling

Dispatch states

Depending on the scheduling level, every process is assigned a
logical state representing its dispatch state at a given point in
time:

* short-term scheduling
* ready, running, blocked
 medium-term scheduling
« swapped and ready, swapped and blocked

» long-term scheduling

. Rule of thumb h ft
» created, terminated wie of thump how often

a scheduling decision or
state change occurs:

» short term: ys — ms

* medium term: ms — min
 long term: min — hours

@ NTNU | S oy Operating Systems 12: Uniprocessor scheduling

Short-term scheduling

* ready to be executed by the CPU
e a process is on the ready (waiting) list for CPU allocation
* its list position depends on the scheduling algorithm

* running: resource "CPU" has been allocated to the process
e a process is computing: "CPU burst"

« there is only one running process per CPU at any given
moment in time

* blocked: waiting for an event
« a process performs input or output: "I/O burst"
it waits for the occurrence of at least one condition

@ NTNU | S oy Operating Systems 12: Uniprocessor scheduling

Medium-term scheduling

A process is completely swapped out

« the complete contents of its address space are moved to
background storage

« the main memory it used is released

The process has to wait to be swapped In:
« swapped out ready (READY SUSPEND)

« CPU allocation ignores this process

* the process is on a waiting list for memory allocation
» swapped out blocked (BLOCKED SUSPEND)

* the process waits for an event (it is blocked)

« if this event takes place, the process state changes to
READY SUSPEND

@ NTNU | S oy Operating Systems 12: Uniprocessor scheduling

Long-term scheduling

* Processes are created (NEW) and ready to be started:
fork(2)

 a process instance was created and assigned to a program

* the allocation of the resource "memory" might still be
outstanding (e.g. when paging in parts of the process address
space on demand)

* Processes are terminated (EXIT) and wait for their removal:
exi1t(2)/wait(2)

 the process is terminated, its resources are released

* the "cleanup" after process termination can be performed by
a different process (e.g. in Unix)

@ NTNU | S oy Operating Systems 12: Uniprocessor scheduling

State transitions

I Wl RUNNING

BLOCKED

READY
SUSPEND
BLOCKED
SUSPEND

Short term

@ NTNU | S oy Operating Systems 12: Uniprocessor scheduling

Scheduling points

« Every transition into the READY state updates the CPU waiting
queue

 a decision about the queueing of its process control blocks is
made

* the result depends on the CPU allocation strategy of the system
« Scheduling and rescheduling takes places...
1. after a process is created
2. if a process yields control of the CPU
3. if the event a process is waiting for takes place

4. when a swapped out process is considered for CPU allocation
again
» A process can be forced to yield (release) the CPU
— preemptive scheduling

* e.g. using a timer interrupt

@ NTNU | S oy Operating Systems 12: Uniprocessor scheduling

First-Come First-Served — FCFS \ﬁfjjﬁ?ﬁ‘n‘g

* A simple and fair (?) algorithm: "first come first served"
* Queueing criterion is the arrival time of a process
 Algorithm is non preempting and assumes cooperating processes

Process _ - Times _
arrival service time Ts start end runtime T, T/ Ts
A 0 1 0 1 0 1.00
B 1 100 1 101 100 1.00
C 2 1 101 102 100 100.00
D 3 100 102 202 199 1.99
average 26.00
« Example:

 the normalized runtime (7,/ Ts) of C is bad in relation to its
service time Ts

@ NTNU | S oy Operating Systems 12: Uniprocessor scheduling 9

Discussion: FCFS - "convoi effect"

 This problem affects short running I/O-intensive processes
which follow long CPU-intensive processes

* Processes with long CPU bursts benefit from this
* Processes with short CPU bursts are disadvantaged

 FCFS minimizes the number of context switches.
However, the convoi effect causes a number of problems:

* large response time
* low I/O throughput

« If the system runs a mix of CPU- and I/O-intensive processes,
FCFS is not a suitable approach

« it is typically only used in batch processing systems

@ NTNU | S oy Operating Systems 12: Uniprocessor scheduling

10

Round Robin (RR) S

* Reduces the disadvantage of processes with short CPU bursts:
"everyone for themselves!"

 the available processor time is split into time slices

 When a time slice is used up, a process switch can occur
* the interrupted process is moved to the end of the ready list
 the next process is selected from ready list according to FCFS

 Basis for protecting access to the CPU:
a timer enforces an interrupt at the end of each time slice

» The efficiency of this approach depends essentially on the chosen
length of the time slice

 too long > round robin degenerates to FCFS
* too short > very high overhead for process switches

* Rule of thumb: time slices should be "a bit longer" than the
duration of a "typical interaction”

@ N'TINU | Sorwegian University of Operating Systems 12: Uniprocessor scheduling 11

Science and Technology

Discussion: RR — performance problems

* |/O-intensive processes terminate their CPU burst before their
time slice is used up

 they block and are added back to the ready list when their
I/O burst is finished

« CPU-intensive processes, however, use their time slice
completely

 they are then preempted and immediately added to the end of
the ready list

« The amount of CPU time for processes is thus distributed
inequally >~ CPU-intensive processes get a larger share

* |/O-intensive processes are not served as well, thus the
utilization of /O devices is low

 the variance of the response time of |/O-intensive processes
Increases

@ NTNU | S oy Operating Systems 12: Uniprocessor scheduling 12

1

Virtual Round Robin (VRR) | S|

* Avoids the unequal distribution of CPU times with RR

» processes are added to a preferred list when their 1/O burst
ends

« this list is considered before the ready list

 Virtual Round Robin uses time slices of different lengths

« processes on the preferred list are only allocated a partial
time slice

 they can use the remaining run time they did not use in their
previous time slice

« if their CPU burst last longer, they are moved to the ready list

« Scheduling in VRR involves a bit more overhead compared to
RR

@ NTNU | S oy Operating Systems 12: Uniprocessor scheduling 13

Shortest process next (SPN) m

* Reduces the disadvantage of short CPU bursts with FCFS:
"let the shortest come first..."

* this requires knowledge about the process run times
* No preemption
« The main problem here is the prediction of run times

 batch processing:
the programmer annotates the required time limit

* interactive procession:
time limit estimated based on previous CPU burst lengths of
the process

* Response times are reduced significantly and the overall system
performance is increased

 However: danger of starvation of CPU-intensive processes

@ NTNU | S oy Operating Systems 12: Uniprocessor scheduling 14

Discussion: SPN — weighting bursts

« CPU bursts further in the past should be weighted less:
S...=a-T,+(1—a)-S,

« values of the constant weighting factor a: 0 < a < 1

* it represents the relative weighting of
single CPU bursts in the time line of
the process
* Recursive solving leads us to...
S..=aT +(1-a)aT, +...+(1—a)aT,_+...+(1-a)"S,

n—1
S,..=a-), (1-a)T, +(1-a)"S,

i=0
e fora=0.8;
S,.,=08T, +0.16T,_,+0.032T,_,+0.0064T, _,+...

N [.
@ NTNU | S oy Operating Systems 12: Uniprocessor scheduling 15

Shortest Remaining Time First (SRTF)
» Extends SPN with preemption m

 thus appropriate for interactive operation
* results in improved runtimes
* The running process is preempted if Texp < Trest
* Texp is the expected CPU burst length of an arriving process
* Trest is the remaining CPU burst length of the running process

» Difference to RR:
SRTF is not based on timer interrupts, but nevertheless
preemptive

* We have to estimate burst lengths instead
» Like SPN, processes can also starve using SRTF

@ NTNU | S oy Operating Systems 12: Uniprocessor scheduling 16

Highest Response Ratio Next - HRRN

. . . | | Classical |
* Avoids the possible starvation of CPU-intensive N
processes that can occur with SRTF

« HRRN considers the aging of processes — their waiting time

__W+s
S
« wis the "waiting time" the process has accumulated so far

» sis the "expected service time"

R

« HRRN always selects the process with the highest value of R
« Again, this is based on an estimation of the service time

@ NTNU | S oy Operating Systems 12: Uniprocessor scheduling 17

Feedback (FB) R

« Short processes obtain an advantage without having to estimate
the relative lengths of processes

 Basis is the penalization of long running processes
* Processes are preempted
« Multiple ready lists used according to number of priority levels
« when a process arrives for the first time, it has highest priority

» when its time slice is used up, it is moved to the next lower
priority level
 the lowest level works according to RR

« Short processes finish in a relatively short amount of time, but
long processes can starve

* It is possible to consider the waiting time to move a process
back to a higher priority level (anti-aging)

@ NTNU | S oy Operating Systems 12: Uniprocessor scheduling 18

Feedback (FB) scheduling model

FCFS (time quantum = 20 = 1)

anti aging” preemption
FCFS (time quantum = 21 = 2)
[T
—>
anti aging preemption
FCFS (time quantum = 2n)
— .
> exit

preemption

@ NTNU | sanetandrecnoiogy

Operating Systems 12: Uniprocessor scheduling

19

Discussion: Priorities

* Process priorities significantly influence scheduling decisions

 Static priorities are defined when a process is created

* their value cannot be changed during the execution of the
process
« this enforces a deterministic ordering of processes

 Dynamic priorities are updated while a process is running

* the operating system usually updates the priorities, but also
the user can be allowed to influence priorities

« SPN, SRTF, HRRN and FB are special cases of this
approach

@ NTNU | S oy Operating Systems 12: Uniprocessor scheduling 20

Combination — Multi-level scheduling

« Multiple scheduling strategies can be combined (i.e., used
"simultaneously"), e.g. support of

* interactive and background processing or
* realtime and non-realtime processing
* interactive / real-time critical processes are preferred

* The implementation typically uses multiple ready lists
« every ready lists has its own scheduling strategy
* the lists are typically processed using priority, FCFS or RR
 overall, a very complex approach!

 FB can be seen as a special case of this approach

@ NTNU | S oy Operating Systems 12: Uniprocessor scheduling 21

Combination — Multi-level scheduling

highest priority

oo P

sl ineracive processes NP>
Batch processes q
))

Student processes (.2

lowest priority
(adapted from Silberschatz)

@ NTNU | S oy Operating Systems 12: Uniprocessor scheduling 22

Objectives for evaluation

« User oriented:

* Run time — time between start and termination of a process including
the waiting time(s) — batch processing

 Response time — time between user input and program response
— interactive systems

« Tardiness — for the interaction with external physical processes,
deadlines have to be adhered to — real-time systems

* Predictability — processes are always processed identically
independent of the load — hard real-time systems

« System oriented:
* Throughput — finish as many processes as possible per time unit
« CPU load — keep the CPU busy at all times
 avoid overhead (scheduling decisions, context switches)
» Fairness — no process should be disadavantaged (e.g. by starvation)
» Load balancing — I/O devices should also be utilized uniformly

@ NTNU | S oy Operating Systems 12: Uniprocessor scheduling 23

Quantitative comparison

Process A B C D E
Start 0 2 4 6 8 average

Service time Ts 3 6 4 5 2

End 3 9 13 18 20
FCFS Runtime T, 3 7 9 12 12 8.60
T/Ts 1.00 1.17 2.25 2.40 6.00 2.56

RR End 4 18 17 20 15
q=1 Runtime T, 4 16 13 14 7 10.80
T/Ts 1.33 2.67 3.25 2.80 3.50 2.71

End 3 9 15 20 11
SPN Runtime T; 3 7 11 14 3 7.60
T/Ts 1.00 1.17 2.75 2.80 1.50 1.84

End 3 15 8 20 10
SRTF Runtime T; 3 13 4 14 2 7.20
T/Ts 1.00 217 1.00 2.80 1.00 1.59

End 3 9 13 20 15
HRRN Runtime T; 3 7 9 14 7 8.00
T/Ts 1.00 1.17 2.25 2.80 3.50 2.14

FB End 4 20 16 19 11
q=1 Runtime T, 4 18 12 13 3 10.00
T/Ts 1.33 3.00 3.00 2.60 1.50 2.29

@ NTNU | S oy Operating Systems 12: Uniprocessor scheduling 24

Qualitative comparison

preemptive/ prediction implement. starvation effect on
Strategy . : :
cooperative required? overhead possible processes
FCFS cooperative no minimal no convol
effect
e fair, but dis-
RR preemp no low no advantage for
(timer) :
|/O-int. proc.
disadvantage
SPN cooperative yes large yes for CPU-int.
processes
reemptive disadvantage
SRTF P P yes larger yes for CPU-int.
(at start)
processes
HRRN cooperative yes large no spoieg] Lo
distribution
preemptive can prefer
FB : no larger yes |/O-intensive
(timer)
processes

@ NTNU | S oy Operating Systems 12: Uniprocessor scheduling 25

Scheduling in Unix

« Two step preemptive approach
 objective: reduce response times
* No long term scheduling
* high-level: mid term, using swapping
* low-level: short term preemptive, MLFB, dynamic process priorities

prio = cpu_usage + p_nice + base

« Once a second:

 every "tick" (1/10 s) reduces the "usage entitlement" for the
CPU by increasing cpu_usage for the running process

* high prio value = low priority!
« The amount of cpu_usage over the time is reduced (smoothed)
 the smoothing function is different in various versions of Unix

@ NTNU | S oy Operating Systems 12: Uniprocessor scheduling 26

UNIX — 4.3 BSD (1)

» The user priority is determined at every fourth tick (40ms):

P 127)

nice ?

. PC u
wrpri =MiN (PUSER + 4" +2-P
* Peou is incremented (by 1) with every tick and is smoothed once
a second:

2-load

< -P_ +P
P 2. load+1 P

P

nice

» Smooting for processes that are woken up and were blocked for

more than 1 second:
P

2-load sptine
P
= 2-load +1)

cpu cpu

@ NTNU | S oy Operating Systems 12: Uniprocessor scheduling

27

UNIX — 4.3 BSD (2)

« Smoothing (using a decay filter):
for an assumed average load of 1: Pcpy ;= 0.66 - Pcpu + Phrice

 |n addition, we assume that a process collects T;ticks in the time
interval i and Phice =0

Pcpu1 =0.66 To

Pcouz =0.66 (T7 +0.66 Tp)=0.66 T:1+0.44 Tp
Pcous =0.66 T2 +0.44 T1 +0.30 To

Pcous =0.66 T3 + ... +0.20 To

Pcous =0.66 T4 + ... +0.13 To

 After 5 seconds, only 13% of the "old" load are considered

@ NTNU | S oy Operating Systems 12: Uniprocessor scheduling 28

Windows NT — Priority classes

* Preemptive, priority- and time slice-based thread scheduling

« preemption also occurs for threads executing in the kernel
— different to Unix

* RR for processes of the same priority:
O reserved, 1-15 variable, 16-31 real-time

* The thread type (fore-/background thread) determines the time
quantum available to the thread — quantum stretching

« quantum (between 6 and 36) is reduced by 3 or 1 with every
tick (10 or 15 ms), if the thread changes to the waiting state

* the length of a time slice varies with the process: 20-180 ms
 foreground/background, server or desktop configuration
 In addition, NT has variable priorities:
« process_priority class + relative thread priority + boost

@ NTNU | S oy Operating Systems 12: Uniprocessor scheduling 29

NT — Adaptive priorities

» Thread priorities are dynamically increased when certain
conditions are given: dynamic boost

« Completion of input/output (disk): +1

 Mouse movement, keyboard input: +6

« Deblocking, release of resources (semaphore, event, mutex)
+1

« Other events (network, pipe, ...) +2

« Event in foreground process +2

« Dynamic boosts are decreased again ("used up") with every tick
e Guarantee of progress
 avoids the starvation of threads

« up to 10 "disadvantaged" threads are allocated priority 15 for
two time slices every 3—4 seconds

@ N'TNU | Sowegian Lniversity of Operating Systems 12: Uniprocessor scheduling

Science and Technology

30

Conclusions

« Operating systems take CPU scheduling decisions on three different
levels:

* Long term scheduling: admission of processes to the system
« Medium term scheduling: swapping of processes
« Short term scheduling: short-term CPU allocation

« All algorithms discussed in this lecture are considered short term
scheduling approaches:

« there are different user- and system oriented criteria to assess the
properties of a CPU scheduling algorithm

* the selection of an approach is difficult and can have unexpected
negative effects

* the "best" approach can only be found by an analysis of typical
application profiles and all given constraints

@ NTNU | S oy Operating Systems 12: Uniprocessor scheduling 31

