B NTNU | sioncindrecnoivay

Operating Systems

Lecture 10: Virtual memory

Michael Engel

Memory management revisited

« The operating system has to collaborate closely with the hardware
to enable efficient memory management

« Segmentation and/or page-based addressing

« The implicit indirection implemented when accessing memory
enables the OS to move programs and data in memory while a
program is running

« The OS additionally has to make strategic decisions
 Placement strategy (first fit, best fit, Buddy, ...)

« These differ in the resulting fragmentation as well as the
overhead for memory allocation and release

« Selection of a strategy depends on the expected
application profile

* When swapping segments or paging:
« Loading strategy
* Replacement strategy = more on this in this lecture!

Norwegian University of : “\/;
E NTNU ‘ Sciencgand Technolggy Operatmg SyStemS 10: Virtual memory

Locality of memory accesses

The execution of single
Instructions only requires the
presence of very few memory
pages
This strong locality also
manifests itself over longer
periods of time

* e.g., instructions are usually

executed one after the other
(without jumps or exceptions)

This locality can be exploited
when the system is running
out of available main memory

memory address

34

30

26

24

22 H

'
i e o
Tro: L

Ft—
| ikl

110
N

-
[[Fe

W W | ‘H f
ot s w7

frm
\

‘‘‘‘‘‘‘

i
11"
'MH |

L

7

N

R il
‘ ‘ ¥ H” »“‘ll " ‘T
Al H‘ \‘ ‘

il 'H I T

I

"

l’ ‘“HH.I‘

Mlulululm] -u\
il

LUJHTE
\J I R'”m[M-

bl

W

ul “Hl"w“ \ "

ol

l [' I " ‘,N‘”
\”HH‘ \ HH 4]/

.

! W
!

1
|
H

&\ !HH\ I

LA L
AT

|
iy J B ; ik

e jop
VTTTIoN | hl
| |
[
H
| o

I

"WHH ‘\‘“ mm \‘Hm]m |‘ ”N”H H\i!!‘lj“m.u

T HIIIHH”IIHHIIH\ i1
HHIIH I JHH LA

liw HII ‘

] I

e e g using overlays gé ‘ ! ‘ [IHv ‘II!') ‘;:;;:1..,”“,.."1ian A H \‘”
g,’ —‘_ 0 o] Hi (/L1781 R I | HH
S 18 ‘ ‘“\Hu\‘”””I”\H‘ll‘l“”“ll”W”n il n} \wummMHHmIHH“IHH|H‘H HH'l ‘\HUHHW
. . . f execution time ————»
@ N'TNU | séencdandrechnoney Operating Systems.10; Virtual memory 3

The idea of “virtual memory”

« Decouple the memory requirements from the available amount of
main memory

* Processes do not access all memory locations with the same
frequency

 certain instructions are used (executed) only very infrequently
or not at all (e.g. error handling code)

 certain data structures are not used to their full extent
* Processes can use more memory than available as main memory

* ldea:
» Create the illusion of a large main memory
« Make currently used memory areas available in main memory
* Intercept accesses to areas currently not present in main memory
* Provide required areas on demand
« Swap or page out areas which are (currently) not used

Norwegian University of : “\/;
E NTNU ‘ Sciencgand Technolggy Operatmg SyStemS 10: Virtual memory

Demand paging

* Providing pages on demand

2 1 0
] A - > 1 Background storage
1 W)
e
g 1 .
3 c 3 '
4 ol ¢+B +[B
5 0 s 8
Q 6 0 ® 6 8:
© ©
3 7 ° ¢ <[12: B
o
g 0 F © 16:
S0 | 0§ 0
2] g e
2 N

presence bit

Norwegian University of : “\/;
B NTNU ‘ Sciencgand Technolggy Operatmg SyStemS 10: Virtual memory

Demand paging

« Reaction to a page fault

‘% > O Background storage
1 W g 1 e
2 s load v from F [EEECEEVA A
s E 3 0:
4 & 4 4: n
5 g 0
2 6 > 6 8:
3 7 ° S 12: B
g e F _2’ 11 Trap! 16:
C_%U’ 11? = § : Operating
T % system
S 12| & m\

presence bit

Norwegian University of : “\/;
B NTNU ‘ Sciencgand Technolggy Operatmg SyStemS 10: Virtual memory

Demand paging

« Reaction to a page fault

0] A
1/
2 e
s
4
)
8 6
S
w7
$ 8 HE
o
89
LU
©
21
> 12 Ne

Page tablel

;

load v from F

11

~
2 ©

page in requested

-

memory page
R F
> Background storage
g 1 N
GE) 2 W
c 3 0:
]
o 4.
s B
o
"é 6 8:
¢ 3 ” D
Trap! 16:

@ NTNU | sanetandrecnoiogy

(O ORI o)

Operating

system

presence bit

search for the requested

memory page

Operating Systems 10: Virtual memory

Demand paging

« Reaction to a page fault

@ NTNU | sanetandrecnoiogy

presence bit

Operating Systems 10: Virtual memory

] A —O0 B3
Background storage
(ll B g 1 e 9 9
2 e ICECIARI I (| © 2
£ 0:
3 c 3
@
4 S| @ 4§e .
B -
Q6 g % 6 8:
® o| ®
% 7 0 :g;' al 8 12 n
S 9W; o 11 | 0 [16:
O] —
S 10| | re 0
® = :
11) 0 Operating
_E . % system

Demand paging

« Reaction to a page fault

repeat the

0} F

o A access > Background storage

il B Q

A load v from F GE) 2

S 0:
3 I g 3
4 2 + |3 4]
£ 5

S =
Q 6 o 6 8:
® © 8
% 7 HD_ . 12- n
S 8NE
o)
'B X F _(D’ 16:
U —
10 B 8)

1 ® perating
_‘E . % system
> 12 e 2l

presence bit

Norwegian University of : “\/;
B NTNU ‘ Sciencégand Technolggy Operatmg SyStemS 10: Virtual memory

Discussion: paging performance

« Performance of demand paging
* No page faults:
« Effective access time ~10-200 ns
« When a page fault occurs:
« Let p be the probability of a page fault

« Assume that the time required to page in a page from
background memory = 25 ms
(8 ms latency, 15 ms positioning time, 1 ms transfer time)

« Assume a normal access time of 100 ns

« Effective access time:
(1—=p) - 100 + p - 25000000 = 100 + 24999900 - p

> Page fault rate has to be extremely low
e piscloseto0

Norwegian University of : “\/;
E NTNU ‘ Sciencgand Technolggy Operatmg SyStemS 10: Virtual memory 10

Discussion: additional properties

* Process creation
« Copy on write
« Easy to implement also using a paging MMU
* More fine grained compared to segmentation

* Program execution and loading can be interleaved
 Requested pages are loaded on demand

» Locking the access to pages
« Required for I/O operations

Norwegian University of : “\/;
E NTNU ‘ Sciencgand Technolggy Operatmg SyStemS 10: Virtual memory

1

Discussion: demand segmentation

* |In principle possible, but this comes with disadvantages...
« Coarse granularity
* e.g. code, data, stack segment
 Difficult main memory allocation
« With paging, all free page frames are equally useful

« When swapping segments, the search for appropriate
memory areas is more difficult

« Background memory allocation is more difficult

« The background memory is divided into blocks, similar
to page frames (sizes = 2n)

 Demand paging has won in practice!

Norwegian University of : “\/;
E NTNU ‘ Sciencgand Technolggy Operatmg SyStemS 10: Virtual memory

12

Page replacement

What is no free page frame is available when a request comes in?
* One page has to be preempted to create space for the new
page!
« Select pages with unchanged content (refer to the dirty bit in
the page table entries)

* Preemption of a page implies paging it to disk if its contents
were changed

 Sequence of events:

« page fault. trap into the OS
e page out a page frame, if no free page frame is available
e page Iin the requested page
 Repeat the memory access

* Problem:

« Which page to choose to be paged out (the “victim”)?

@ NTNU | oo ey Operating Systems 10: Virtual memory

Science and Technology

13

Replacement strategies

« We will discuss replacement strategies and their effect on
access sequences (also: access or reference orders)

« Access sequence:

« Sequence of page numbers which represents the
memory access behavior of a process

« Determine access sequences, e.g. by recording the
addresses accessed by a process

* Reduce the recorded sequence to only page numbers
« Conflate consecutive accesses to the same page to one

« Example access sequence:
1,2,3,4,1,2,5,1,2,3,4,5

Norwegian University of : “\/;
E NTNU ‘ Sciencgand Technolggy Operatmg SyStemS 10: Virtual memory 14

First in, first out

* Replace the oldest page
* Necessary state information:
« Age resp. page in time for each page frame

* Order of replacement (9 page ins):

Access sequence 1 2 3 4 1 2 5 1 2
frame 1 1 1 4 4 4 5 5 5
main frame 2 2 2 211 1 1 1

memory
frame 3 3 3 3 2 2 2 2
frame 1 o1 2 0 1 2 0 1 2

control

states frame 2 > 0 1 2 0 1 2 3 4
(age per frame) frame3 > > 0 1 2 0 1 2 3

@ NTNU | sanetandrecnoiogy

Operating Systems 10: Virtual memory

A O W N O OO W

O =~ & A WO OO H

= N OO0 A WO O O

15

Optimal replacement strategy

 Forward distance
* Time until the next access to the respective page

« Strategy OPT (or MIN) is optimal (for a fixed number of frames):
minimal number of page ins/replacements (here: 7)

« “Always replace the page with the largest forward distance”

Access sequence 1 2 3 4 1 2 5 1 2 3 4 5
frame 1 1 1 1 1 1 1 1 1 3 4 4
main frame 2 212222222222

memory
frame 3 3 4 4 4 5 5 5 5 5 5
frame 1 4 2 1 3 2 1 > > > > >

control

states frame 2 > 4 3 2 1 3 2 1 > > > >
(forward dist.) fame3 > > 7 7 6 5 5 4 3 2 1 >

Norwegian University of : “\/;
B NTNU ‘ Sciencegand Technol?:/)gy Operatmg SyStemS 10: Virtual memory

First in, first out

« Larger main memory: 4 frames now (10 page ins)
 FIFO-anomaly (Bélady's anomaly, 1969)

Access sequence 1 2 3 4 1 2 5 1 2

frame 1 1 1 1 1 1 5 5 5

main frame 2 2 2 2 2 2 2 1 1

ey frame 3 3 3 3 3 3 3 2

frame 4 4 4 4 4 4 4

frame 1 O 1 2 3 4 5 0 1 2

control frame2 > 0 1 2 3 4 5 0 1
states

(age per frame) frame 3 > > 01 2 3 4 5 0

frame 4 > > > 0 1 2 3 4 5

@ NTNU | sanetandrecnoiogy

Operating Systems 10: Virtual memory

S =~ N W WO N -~ O W

- N W O W N =~ s~ b

N W O© =~ W N o & O

17

Optimal replacement strategy

« Larger main memory: 4 frames now (6 page ins)
* no anomaly

Access sequence 1 2 3 4 1 2 5 1 2

frame 1 1 11 1 1 1 1 1

main frame 2 2 2 2 2 2 2 2 2

ey frame 3 SH NCH RSH RSH RSN RSN RS

frame 4 4 4 4 5 5 5

frame 1 4 2 1 3 2 1 > >

control frame2 > 4 3 2 1 3 2 1 >
states

(forward dist.) frame 3 > > 7 6 5 4 3 1

frame 4 > > > 7 6 5 5 4 3

@ NTNU | sanetandrecnoiogy

Operating Systems 10: Virtual memory

vV 01 W N -~ W

\%

\

v o1 o N &~ b

\%

vV O w N H O

\%

18

Optimal replacement strategy

* Implementation of OPT is practically impossible

e ...because we would have to know the access sequence
in advance!

« OPT is only useful to compare strategies

« Wanted: strategies which are as close to OPT as possible
* e.g. Least Recently Used (LRU)

Norwegian University of : “\/;
E NTNU ‘ Sciencgand Technolggy Operatmg SyStemS 10: Virtual memory

19

Least recently used (LRU)

» Backward distance
« Time since the last access to the page
 LRU strategy (10 page ins)

« "Replace the page with the largest backward distance!”

Access sequence 1 2 3 4 1 2 5 1 2
frame 1 1 1 4 4 4 5 5 5
main frame 2 2 2 211 1 1 1

memory
frame 3 3 3 3 2 2 2 2
frame 1 o1 2 0 1 2 0 1 2

control

states frame 2 > 0 1 2 0 1 2 0 1
(backward dist.) frame 3 > > 012012 0

@ NTNU | sanetandrecnoiogy

Operating Systems 10: Virtual memory

= N O N -~ W W

N © =~ N b WO »

O =~ N N & O O

20

Least recently used (LRU)

« Larger main memory: 4 frames now (8 page ins)

Access sequence 1 2 3 4 1 2 5 1 2

frame 1 1 1T 1 1 1 1 1 1

main frame 2 2 2 2 2 2 2 2 2

ey frame 3 3 3 3 3 5 5 5

frame 4 4 4 4 4 4 4

frame 1 o1 2 3 0 1 2 0 1

control frame2 > 0 1 2 3 0 1 2 0
states

(backward dist.) framed > > 0 1 2 3 0 1 2

frame 4 > > > 0 1 2 3 4 5

@ NTNU | sanetandrecnoiogy

Operating Systems 10: Virtual memory

S W =~ N W o0 N -~ O

LN

- O N W W A N -

N = W O W & N O O

21

Least recently used (LRU)

 No anomaly

* In general: there exists a class of algorithms (stack
algorithms) that do not show an anomaly:

* For stack algorithms with k page frames, the following
holds:
At every point in time a subset of the pages is paged in
that would also be paged in at the same time in a
system with k+7 page frames!

 LRU: the most recently used k pages are paged in

« OPT: the k pages are pages in which will be accessed
next

 Problem
« Implementing LRU requires hardware support
 Every memory access has to be considered

Norwegian University of : “\/;
E NTNU ‘ Sciencgand Technolggy Operatmg SyStemS 10: Virtual memory 22

Least recently used (LRU)

« Naive Idea: Hardwaresupport using counters

« CPU implements a counter that is incremented with every
memory access

« For every access, the current counter value is written into
the respective page descriptor

« Select the page with the lowest counter value (> search!)

« Large implementation overhead
* many additional memory accesses required
« large amount of additional memory required
* Minimum search required in the page fault handler

@ NTNU | e ey Operating Systems 10: Virtual memory 23

Science and Technology

Second chance (clock)

« This approach works: use reference bits

* Reference bit in the page descriptor is set automatically by
the hardware when a page is accessed

e easier to implement
« fewer additional memory accesses

* Modern processors/MMUs support reference bits
(e.g. called “access bit” on x86)

* Objective: approach LRU
 the reference bit of a newly paged in page is initially set to 1

« when a “victim” page is needed, the reference bits are
checked in order

 if the reference bit = 1, set if to 0 (second chance)
 if the reference bit = 0, replace this page!

Norwegian University of : “\/;
E NTNU ‘ Sciencgand Technolggy Operatmg SyStemS 10: Virtual memory

24

Second chance (clock)

« Implementation using a rotating pointer (clock)

reference bit

« Reference bit at pointer position is tested replaced

» |f the reference bit = 1: clear it
» if the reference bit = 0: we found a page to be replaced
» Pointer “ticks on”: if no page could be found, then start over

« |f all reference bits are = 1, then second chance is a FIFO

Norwegian University of : “\/;
B NTNU ‘ Sciencgand Technolggy Operatmg SyStemS 10: Virtual memory 25

Second chance (clock)

« Sequence with three page frame:

9 page ins
Access sequence 1 2 3 4 1 2 65 1 2
frame 1 1 1 4 4 4 5 5 5
main frame 2 2 22111 1 1
memory
frame 3 3 3 3 2 2 2 2
frame 1 11 1 1 1 1 1 1 1
control frame2 0 1 1 0 1 1 0 1 1
states
(reference b|ts) frame 3 O O 1 0 0 1 O O 1
pointerpos. 2 3 1 2 3 1 2 2 2

@ NTNU | sanetandrecnoiogy

Operating Systems 10: Virtual memory

wWw O -~ O N W O W

e T C N &) B

- A A a DN W oo o

26

Second chance (clock)

* Increase the main memory (4 page frames):
10 page ins

Access sequence 1 2 3 4 1 2 6§ 1 2
frame 1 1111 1 1 8 5 §

main frame 2 2 2 2 2 2 1 1
(el frame 3 3 3 3 3 3 3 2
frame 4 4 4 4 4 4 4

frame 1 1111 1 1 1 1 1

control frame 2 o111 1 1 0 1 1
states frame 3 o o111 1 0 0 1
reference btS) fame4 0 0 0 1 1 1 0 0 0
pointerpos. 2 3 4 1 1 1 2 3 4

@ NTNU | sanetandrecnoiogy

Operating Systems 10: Virtual memory

S N U U U Y “ I |G IR U ¢) I b)

N O O © -~ W N -~ & b

W O O =~ ~ W N o b~ O

27

Second chance (clock)

Second chance can also show the FIFO anomaly
 |f all reference bits are = 1, this is a FIFO order
In the common case, however, second chance is close to LRU

Extension
« Modification bit can be considered in addition (dirty bit)

« Three classes of (reference bit, modification bit) :
(0,0), (1,0) and (1,1)

« Search for the “lowest” class (used in macOS)

Norwegian University of : “\/;
E NTNU ‘ Sciencgand Technolggy Operatmg SyStemS 10: Virtual memory

28

Discussion: free page buffer

...accelerates page fault handling

* Instead of replacing a page, a number of free pages is always
kept in memory

« Pageouts take place “in advance”

* More efficient: time to replace a page is dominated by the
time required for the page in (no need to find a victim and
page it out)

« Page-to-page frame relation is still valid after paging out

* In case the page is used again before it would be replaces,
it can be reused with high efficiency

« The page is no longer allocated to the free page buffer and
Is reallocated to its respective process

Norwegian University of : “\/;
E NTNU ‘ Sciencgand Technolggy Operatmg SyStemS 10: Virtual memory

Page frame assignment

Problem: Distribution of page frames to processes

« How many page frames should a single process use?
« Maximum: limited by the number of page frames
 Minimum: depends on the processor architecture

» At least the number of pages which is necessary to
execute a machine instruction

 |dentical share size

 The number of frames allocated to a process depends on
the number of processes

« Size dependent shares

* Program size is considered when determining the number of
page frames to allocate to it

Norwegian University of : “\/;
E NTNU ‘ Sciencgand Technolggy Operatmg SyStemS 10: Virtual memory 30

Page frame assignment

« Global and local page requests
* local: a process only replaces its own pages

« Page fault behavior depends only on the behavior of the
process

« global: a process can also replace pages of other processes

* More efficient, since unused pages of other processes
can be used

Norwegian University of : “\/;
E NTNU ‘ Sciencgand Technolggy Operatmg SyStemS 10: Virtual memory 31

Thrashing

* A page that was paged out is accessed immediately after the
page out happened

* The process spends more time waiting to handle the page
faults than with its own execution

: >
thrashing

CPU load

>
Grade of multiprogramming (number of processes)

Norwegian University of : “\/;
E NTNU ‘ Sciencgand Technolggy Operatmg SyStemS 10: Virtual memory

32

Thrashing

« Causes
* A process is close to its page minimum
 Too many processes in the system at the same time
« Suboptimal replacement strategy

> Local page requests avoids thrashing between processes
> Allocating a sufficiently large number of page frames avoids

thrashing within process pages
« Limitation of the number of processes

Norwegian University of : “\/;
E NTNU ‘ Sciencgand Technolggy Operatmg SyStemS 10: Virtual memory

33

Solution 1: swapping of processes

* Inactive processes do not require page frames

« Page frames can be distributed among fewer processes

* Has to be combined with scheduling to...
* avoid starvation
« enable short answer (reaction) times

wait for page
page fault blocked

deactivate
activate
blocked deactivate blocked
active process inactive process

Norwegian University of : “\/;
E NTNU ‘ Sciencgand Technolggy Operatmg SyStemS 10: Virtual memory

34

Solution 2: working set model

« Set of pages really needed by a process (working set)

« Can only be approximated, since this is usually not
predictable

« Approximation by looking at the more recently accessed A pages
« Appropriate selection of a A
« too large: overlapping of local access patterns

« too small: working set does not contain all necessary
pages

dCCess sequence

» Notice: A > |working sel|, since a single page is usually
accesses multiple times in a row.

Norwegian University of : “\/;
B NTNU ‘ Sciencgand Technolggy Operatmg SyStemS 10: Virtual memory 35

Working set model

« Example: working sets for different values of A

Access sequence

@ NTNU

page 1
page 2

Il
w

page 3
page 4
page 5
page 1
page 2

1
I

page 3
page 4
page 5

Norwegian University of
Science and Technology

X
X X X »w
X X X
X X X
X X X N
X
X
X X N

X X X X
X
X
X

>3
X X X X
X X X X

X
X X X

Operating Systems 10: Virtual memory

X X X
X

>
X X X X
X X X X

X
X

X

36

Working set model

« Approximate accesses by time values

« A certain time interval is ~proportional to the number of
Memory accesses

* Requires measuring the virtual time of the process

* Only that time is relevant in which the process is in state
RUNNING

« Each process has its own virtual clock

Norwegian University of : “\/;
E NTNU ‘ Sciencgand Technolggy Operatmg SyStemS 10: Virtual memory

37

Determining the working set and timers

* Naive idea: approximate the working set using:
« Areference bit

« Age information per page (time interval in which the page was
not used)

« Timer interrupt (using a system timer)
* Algorithm

« Periodic timer interrupts are used to update the age
information using the reference bit:

« reference is set (page was used) > set age to zero
» else increase the age information
« only pages of the currently running process “age”

« Pages with an age > A are no longer considered to be part of
the working set of the respective process

Norwegian University of : “\/;
E NTNU ‘ Sciencgand Technolggy Operatmg SyStemS 10: Virtual memory 38

Determining the working set and timers

* |mprecise

* Reduce the time intervals:
more overhead, but more precise measurement

 However, the system is not sensitive to this imprecision

 Inefficient
« Alarge number of pages has to be checked

Norwegian University of : “\/;
E NTNU ‘ Sciencgand Technolggy Operatmg SyStemS 10: Virtual memory

39

Determine the working set with WSclock

* This is the real solution:
WSClock algorithm (“working set clock™)

* Works like the previous clock algorithm

« A page is only replaced if
 itis not an element of the working set of its process
« or the process is deactivated

« When resetting the reference bit, the current time of the
respective process is noted

 this time can e.g. be kept and updated in the process
control block PCB

* Determining the working set:

« Calculate the difference between the virtual time of the
process and the time stamp in the page frame

Norwegian University of : “\/;
E NTNU ‘ Sciencgand Technolggy Operatmg SyStemS 10: Virtual memory

40

Determine the working set with WSclock

« WSClock Algorithmus

virtual process time

A=3

PCB1 PCB2 | | PCB3

1 6 57
[

/"‘\I=

T
4@@42 }@@-«ﬂz page is

/ \ * replaced

reference bit page frame
time stamp

Norwegian University of : “\/;
B NTNU ‘ Sciencégand Technolggy Operatmg SyStemS 10: Virtual memory 41

Discussion: working set problems

« Time stamps also need memory
« Itis not always possible to ascribe a page to a specific process

« shared memory pages are the rule rather than an exception
In modern operating systems

« Shared libraries
« Shared pages in the data segment (shared memory)

> Solution 3: Thrashing can be avoided in an easier way by
directly controlling the page fault rate

* Measure per process
 rate < limit: reduce page frame set
 rate > limit: enlarge page frame set

@ NTNU | oo ey Operating Systems 10: Virtual memory

Science and Technology

42

Loading strategy

 Load on demand
« Safe approach
* Prefetch
+ Difficult:
Pages that are paged out are not used right now, only later
« Often, one machine instruction leads to multiple page faults

« Prefetching of these pages can be realized by interpreting
the machine instruction that causes the first page fault.
This will avoid any additional page faults for this
instruction.

 Load the complete working set in advance when a process is
swapped in

« Detect sequential access patterns and prefetch subsequent
pages

Norwegian University of : “\/;
E NTNU ‘ Sciencgand Technolggy Operatmg SyStemS 10: Virtual memory 43

Conclusions

* Virtual memory allows to use large logical address spaces even if the
physical memory is small

 However, this involves some overhead
« Hardware overhead
« Complex algorithms in the operating system
« “Surprising” effects (such as “thrashing”)
* Timing behavior not predictable

> Simple (special purpose) systems that do not necessarily need these
features, should better not implement them

Norwegian University of : “\/;
E NTNU ‘ Sciencgand Technolggy Operatmg SyStemS 10: Virtual memory

44

