® NTNU | bowegian niversity of

Operating Systems

Lecture 5: Threads

Michael Engel

Review: fast process creation Unix process

« Copying the address space takes a lot of time

« Especially if the program immediately calls exec..() afterwards
> complete waste of time!

« Historic solution: vfork

« The parent process is suspended until the child process calls
exec..() or terminates using _exit()

« The child simply uses code and data of its parent (without copying!)
« The child process must not change any data
« sometimes not so simple: e.g., don't call exit(), but _exit()!

* Modern solution: copy on write

« Parent and child process share the same code and data
segments using the memory management unit (MMU)

« A segment is copied only if the child process changes any data
« This is not the case when exec..() is called directly after fork()
« fork() using copy on write is almost as fast as vfork()

@ N'TINU | Sorwegian University of Operating Systems 05: Threads 2

Science and Technology

i essS
Can we do better? Unix proc

* Modern solution: copy on write
« fork() using copy on write is almost as fast as vfork()

* The weight of a process is an informal description of the
size of its context

* Accordingly, it is an indicator for the time required for a
context switch, which does (among other things):

« CPU scheduling
* saving the previous context
* loading the new context
« Classical Unix processes are “heavyweight”
* ...no matter if we use copy-on-write or not

Norwegian University of : .
E NTNU ‘ Sciencgand Technolggy Operatmg SyStemS 05: Threads 3

Lightweight processes (threads) T

« With processes, there is a 1:1 relation between control flow and
address space

« even for forked processes due to copy-on-write
« Closely cooperating threads can share an address space
 code + data + bss + heap, but not the stack!
* Why not the stack?
« Each thread has an independent flow of control

« Accordingly, it required an independent call hierarchy,
local variables etc.

« Advantage of threads:

« Complex operations can be delegated to a lightweight helper
thread

« The parent thread can already wait for input while the helper
thread is running > reduced latency (response time)

Norwegian University of : .
E NTNU ‘ Sciencgand Technolggy Operatmg SyStemS 05: Threads

Threads example Threag®

request
. backlog queue acczgfez
« Typical use case
. main server
for threads: web server

« Programs consisting of
independent control flows can
immediately benefit from
multi processor systems responses transmitted to clients

« Fast context switch: no need to copy the address space
 only switch the stack pointer — one CPU register

« Disadvantage of threads:
« Difficult and error-prone to program
» Access to shared data of threads requires coordination
« OS still has to schedule threads > overhead

pool of _
worker threads

Norwegian University of : .
E NTNU ‘ Sciencgand Technolggy Operatmg SyStemS 05: Threads S

Threads in Windows

i Process

Global and
static data

Stack 1 Stack 2| | Stack 3| | Stack 4

Code 2222

Norwegian University of : .
B NTNU ‘ Sciencgand Technolggy Operatmg SyStemS 05: Threads

Threads in Windows (2)

Process: provides environment and address space for threads
« But has no execution context in itself!

A Win32 process always contains at least one thread

Thread: unit executing code

« Every thread has its own stack and CPU register set
(especially the program counter)

* The scheduler allocated compute time to the threads
All threads are kernel level threads

« User level threads (fibers) are possible, but unusual
Strategy: Keep the number of threads low

« Use overlapping (asynchronous) I/O

Norwegian University of : .
E NTNU ‘ Sciencgand Technolggy Operatmg SyStemS 05: Threads

Threads Iin Linux

« Linux implements POSIX threads using the pthreads library
« pthreads on Linux use a Linux-specific system call:

Linux system call:
. int __clone(int (*fn)(void*), void *stack, int flags, void *arg)

+ Universal function, parameterized using the flags parameter:
.+ CLONE_VM use a common address space
* CLONE_FS share information about the file system
 CLONE_FILES share file descriptors (open files)
 CLONE_SIGHAND share the signal handler table

* In Linux, all threads and processes are internally managed
as tasks

 The scheduler does not differentiate between those

Norwegian University of : .
E NTNU ‘ Sciencgand Technolggy Operatmg SyStemS 05: Threads 8

Threads in Linux (2) % cc thread-pid.c -o thread-pid -lpthread

% ./thread-pid &

[1] 14608
« Originally, threads of a process e dt:;ﬁ:g dp;‘i’ dlj;figf@
showed up as individual % ps X
. PID TTY STAT TIME COMMAND
processes in the ps output [9] 14042 pts/e S 2:00 bash
14608 pts/9 R 0:01 ./thread-pid
14609 pts/9 S 0:00 ./thread-pid
14610 pts/9 R 0:01 ./thread-pid
14611 pts/9 R 0:00 ps x

* More recent Linux systems (from kernel 2.4) still behave like this [6], but
no longer show separate processes when using CLONE_THREAD

...

Linux system call:
int _ clone(int (*fn)(void*), void *stack, int flags, void *arg)

New value for the flags parameter:
« CLONE_THREAD If CLONE_THREAD is set, the child is placed in
the same thread group as the calling process

Norwegian University of : .
B NTNU ‘ Sciencgand Technolggy Operatmg SyStemS 05: Threads o

Fibers Threads

 also called user-level threads, green threads or featherweight
processes

« Implemented on application level only (inside of a process)

* The operating system doesn’t know about featherweight
processes

» Accordingly, scheduling affects the whole process
* Implemented using a library: user level thread package
« Advantages:
« Extremely fast context switch: only exchange processor registers
* No switch to kernel mode required to switch to different fiber
« Every application can choose the fiber library best suited for it
« Disadvantages:

« Blocking a single fiber leads to blocking the whole process (since
the OS doesn’t know about fibers)

* No speed advantage from multiprocessor systems

Norwegian University of : .
E NTNU ‘ Sciencgand Technolggy Operatmg SyStemS 05: Threads

10

Inspiration: Duff’s Device Threads

« Problem: copying 16-bit unsigned integers (“short’s) from an array into

...

Send(ShOIt 'kto’ 'kfrom’ int Count) 1
9 : -send(short *to,
do { /* count > 0 assumed */: E{ ,

*to = *from++; :
} while (--count > 0);

register n = count / 8;
do {
*to = *from++;

e, é ; *to = *from++;4
; *to = *from++;
 Optimization: *to = *from++;
. . * - % .
unroll the loop — execute multiple to = “from++;
: Qi : : *to = *from++;
copy operations inside a single ; '

*to = *from++;
*to = *from++;
} while (--n > 0);

loop iteration
> reduces the loop overhead

Norwegian University of : .
B NTNU ‘ Sciencgand Technolggy Operatmg SyStemS 05: Threads L

Inspiration: Duff’s Device Threads

* Problem with loop unrolling: count has to be a multiple of 8 now!

- send(short *to, *from, int count)
{

register n = count / 8;

; do {
: *to = *from++; : _
: *to = *from++; : :send(short *to, *from, int count)
: *to = *from++; : : ol
*:g : *Eg:: registern = (count + 7) / 8;
: *to = *fromes: switch (count % 8) {
: *to = *from++; : : case 0: do { *to = *from++;
g *to = *from++; L case 7: *to = *from++;
: } while (--n > 0); : : case 6 *to = *from++;
S case 5: *to = *fromss;
_ : case 4: *to = *from++;
« Duff’s solution [3]: case 3: *to = *from++;
Introduce a jump into theloop @ case 2: *to = *from++;
. . . . * - ¥ .
body (using the C switch . case 1 to = "from++;
) ; } while (--n > 0);
statement) to implement the 1

first n mod 8 iterations!

Norwegian University of : .
B NTNU ‘ Sciencgand Technolggy Operatmg SyStemS 05: Threads 12

Fibers example: Protothreads Threads

« stackless, lightweight threads, or coroutines

« provide a blocking context cheaply using minimal memory per
protothread (on the order of single bytes)

* Developed by Adam Dunkels (SICS) [2] The LINE_ macrois

: : o a gcc extension to C:
« Related approaches described in detail in [4] gives the current source
code line number

..

-#include “pt.h" : :// protothreads implementation: pt.h

:// .. protothreads example .. : 5 .
. PT_THREAD (example (struct pt *pt)) { ;#dEfzaitzzzEEiTSt?{ zase ..

PT_BEGIN(pt);

.// . more macros defined ..
‘#define PT_WAIT_UNTIL(pt, c¢) \

while (1) {
if (initiate_io()) {
timer_start(&timer);

PT_WAIT UNTIL (pt, : : pt->lc = _ LINE_ ; case _ LINE_ : \:
io_completed() || if(!(c)) return O :
timer_expired(&timer)); : : stand

read data (Sj e eeeeereerrenrrnnnns Note: you don’t n‘eed tO_Un((j:ira“enge

1) | E medambhﬂe—ﬁsa“me and the
our C knowledge to exp ing on
} ;o;cyros and find out what is goind ‘

Norwegian University of : .
B NTNU ‘ Sciencgand Technolggy Operatmg SyStemS 05: Threads 13

Processes vs. threads vs. fibers

Address
space

Kernel
visibility

Scheduling

Stack

Switching
overhead

@ NTNU | sanetandrecnoiogy

Processes

separate

yes

kernel level

separate
per process

very high

Threads

common

yes

kernel level

separate
per thread

high

Operating Systems 05: Threads

Fibers

common

no

user space

can be
common

low

14

Conclusion

« Traditional Unix process creation using fork is too heavyweight
for some applications

* e.g. a heavily used web server
 Alternatives exist:
* (kernel-level) threads
* (user-level) fibers
« Each solution has its own advantages and drawbacks
* Processes: copy and scheduling overhead
* Threads: synchronization difficult to program
« Fibers: no kernel management
 blocking a fiber of a process blocks all fibers
« Linux has used the Unix process model exclusively for a long time

« Windows (NT) didn’t have to be compatible and implemented
threads from the beginning

Norwegian University of : .
E NTNU ‘ Sciencgand Technolggy Operatmg SyStemS 05: Threads

15

References

1. Papastavrou, Stavros & Samaras, George & Evripidou, Paraskevas &
Chrysanthis, Panos. (2003). Fine-Grained Parallelism in Dynamic Web
Content Generation: The Parse and Dispatch Approach. 2888. 573-588.
doi 10.1007/978-3-540-39964-3 35

2. A. Dunkels, O. Schmidt, T. Voigt, and M. Ali, Protothreads: Simplifying
Event-Driven Programming of Memory-Constrained Embedded
Systems, Proc. ACM SenSys, Boulder, CO, USA, Nov 2006

3. Tom Duff, AT&T Bell Laboratories, Posting to the Usenet group
comp.lang.c (August 1988): http://www.lysator.liu.se/c/duffs-device.html

4. Simon Tatham, Coroutines in C:
https://www.chiark.greenend.org.uk/~sgtatham/coroutines.html

5. M. Mitchell, J. Oldham, A. Samuel, Advanced Linux Programming,
Sams 2001, ISBN 073570970X

6. U. Drepper, |. Molnar, The Native POSIX Thread Library for Linux,
https://www.akkadia.org/drepper/nptl-design.pdf

Norwegian University of : .
E NTNU ‘ Sciencgand Technolggy Operatmg SyStemS 05: Threads 16

http://www.lysator.liu.se/c/duffs-device.html
https://www.chiark.greenend.org.uk/~sgtatham/coroutines.html
https://www.akkadia.org/drepper/nptl-design.pdf

