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Operating Systems

Lecture 2: Resources and computer architecture
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Overview

« Structure of a typical computer system
« Basic elements
 |nstruction execution
 From von Neumann to modern computers
 Memory hierarchy
* Multiprocessing
« Communication
« Heterogeneous systems: GPGPUs
* Non-functional properties
« Security and virtual memory
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Computers as they are no more

« The typical diagram of a von Neumann-style computer system in an
introductory course of computer architecture [1]
(this diagram only models very simple microcontrollers today):

instructions

data
08| @ g 3
= % ol s: (@f%\‘?“  Addressable unified memory for code
= =5 (@0 and data

* 1/O devices in the same or a different
address range

» Optional: Interrupts notify CPU of the
completion of an I/O operation

» Optional: I/0O devices can use DMA
to transfer data to memory without
CPU interaction

Device
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Asynchronous execution: interrupts

instructions Polling:
write(device, command)
data while (not ready(device)) {
// just wait and waste time!
}
Yy R read(device, data)
"(7)' Qr P
o9 2 2. S
=z| §| s: ((\e%g\‘?“ Interrupt driven:
[l [l | 0\ ,'
— 6\\?'0%6%\ write(device, command)
- /'2}0 // do something else.....................

gl Interrupt:
> read(device, data)

Access to I/O devices is often slow
* Polling sends a command and then waits until the device
returns data
» With interrupts, the device notifies the program when data is ready
« This changes the control flow the CPU executes!

* More complex to develop software for
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Computers as they are no more

« (Going a bit more into details:
CPU

» Components of the computer
Data path Control Unit are connected by buses

ALU (CU) « Address bus:

identify component
» Data bus:

transfer information

Data bus » Control bus:

metainformation
(read/write, interrupt, ...)

— not shown here
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Address bus

 CPU has control over the bus
* Exception: DMA




Instruction execution

CPU

Control Unit

Fetch Unit PC 3050

Data path — Control Unit

ALU (CU) Decode Unit

IR MOV R1, #42
Execute Unit

Address bus

Data bus

Address from program counter (PC)

Instruction bit pattern to
instruction register (IR)

10111001001100...1

PC = <reset address> // initialize PC 10111000101100...1
IR = memory[PC] // fetch first instruction 10100000111000...0
haltFlag = false
while (not haltFlag) {
execute(IR) // execute
PC=PC+4 // address of next instr.
IR = memory[PC] // fetch it!

10111010001100...1

}
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Getting a bit more real

« Simple model of execution only works efficiently if the speed of
memory = speed of the CPU

« This was the case until ca. 1980
 Memory speed only improved ~6%/year
« Today: “memory gap:
« CPU speed ~ 10,000x faster, but memory speed only ~ 10x
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Introducing a memory hierarchy

« |dea: introduce caches
« small, but fast intermediate levels of memory
« Caches can only hold a partial copy of the whole memory
« Unified caches vs. separate instruction and data caches
« Expensive to manufacture (= small)
« Later: introduction of multiple levels of cache (L1, L2, L3...)
« Each one bigger but slower than the previous one
« Caches work efficiently due to locality principles [2]:

« temporal locality: a program accessing some part of memory is
likely to access the same memory soon thereafter

 spatial locality: a program accessing some part of memory is
likely to access nearby memory next
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Introducing a memory hierarchy

/\
The further from the CPU: 100 Byte 1ns
* Increasing size
- 10 kB 5ns
 Decreasing speed
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Memory impact: non-functional properties

W DRAM @B SRAM [0 Integer [] FP

Memory has a large influence on g 100% i 3]
non-functional properties of a system > ™" ||
* Average, best, and worst case f 40
performance, throughput and £ 0%
latencies RS e
« Power and energy consumption R Gl
. Reliability and security _ tZcachesize
20 L1 cachfe size V‘ — i
Non-functional properties depend o 2 7
on many parameters of memory, e.g. £ 2 :
« Cache architecture % 15 V —
 Memory type g 10| sagr e
« Alignment and aliasing of data 3 eSS o
O T T 1 T T "]
210 913 916 919 922 935 9o
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When one processor is hot enough

@ NTNU

Moore’s Law (1965) [4]:

« observation that the number of transistors in a dense integrated
circuit (IC) doubles about every two years

« Accordingly, increase in CPU speed due to smaller semiconductor

structures

This development is
hitting physical
limitations

« CPU frequencies
“stuck” at ~3 GHz

* Energy consump-
tion is additional
limiting factor

Norwegian University of
Science and Technology
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When one processor is hot enough

« What can we do with all these transistors?
« Bigger caches — energy hungry and prone to faults!

> Put more processors on a chip!
« Earlier high-end systems already used multiple separate

processor chips
* Old as well as new problems:
 Memory throughput now has
to satisfy demands of n processors
us
Data bus

« Software now has to Address b
multiple processors!

« Caches need to be coherent ‘
so they hold the same copies Device Device
of main memory data

support execution on
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More processors, more memories

 Memory throughput now has to satisfy demands
of n processors

* Provide each processor with its own main memory!

* NUMA
“non unified memory
architecture”

 And new problems show up:

* How to access data in 2
another CPU’s memory? Address bus

Memory

. Who decides which CPU  Databus

is allowed to use the bus?

?
 |s acommon bus still Device Device
efficient?
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A NUMA system board

PCle
/O bus
slots
Memory
banks local Memory
to CPU 1 ~banks local
to CPU 2
CPU1
- CPU2
5 e e ! { i - _ :
[HP 2820 mainboard from Wikimedia by Jud McCranie CC BY-SA 4.0]
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On-chip communication

* Use high-speed networks instead of conventional buses
* Using ideas from computer networking

* On-chip network can achieve high throughput and low
latencies

« Example: on-chip ring network connecting 6 CPUs, a
system controller (“agent”) and a GPU

Core Core

Me: Sl:bsys _g 3.!03 G % B.IO:) ('; _g GJOD E
& ndd : & ndd : & ndd :
[ B o]
)«E GPU
] o e
System G
ks CPU CPU CPU ﬂ
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[ L3 Cache |
ayded €1

[ L3 Cache |
ayded g1

[ L3 Cache |

Core
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Heterogeneous systems: GPGPUs

* In modern computers, not only CPUs can execute code
« GPGPUs (general purpose graphics processing units)
« Massively parallel processors for typical parallel tasks

« 3D graphics, signal processing, machine learning, bitcoin
mining...

* Few features for protection, security...

« Traditionally, GPUs were accessible to a single program only
(in Unix: “X window server”) for drawing

« Other programs had to ask the X server for services

* In modern systems, multiple programs want direct access to
the GPGPU

* How can the OS multiplex the GPGPU safely and
securely?
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Security

...there’s another important non-functional property!

Multiple programs running simultaneously

* e.g. aonline banking application
and a video player

 How can be avoid the video player
accessing memory of the banking app?
* e.g. your account number and

password, which the video player
could share online!

» Restrict access to non permitted Address bus
memory ranges Data bus

 The memory management
unit (MMU) only makes memory
ranges visible to a running program
“belonging” to it
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The MMU

« |dea: intercept “virtual” addresses generated by the CPU
« MMU checks for “allowed” addresses

» It translates allowed addresses to “physical” addresses in main memory
using a translation table

* Problem: translation table for each single address would be large
« Split memory into pages of identical size (power of 2)

* Apply the same translation to all addresses in the page:
page table

 MMUs were originally separate ICs
sitting between CPU and RAM
« Or even realised using discrete
components (e.g. in the Sun 1 [8]) Niotorol
« Higher integration due to Moore's 68451 MMU

Law > fit on CPU chip now! chip (1982) [7]
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Page table structure

« Split memory into pages of identical size (power of 2)
* Apply the same translation to all addresses in the page: page table
« Find a compromise page size allowing flexibility and efficiency
« Typically several kB: 4 kB=212 bytes (x86), 16 kB (Apple M1)
« 32 bit CPU (232 addr.): 4 kB pages > 232/212 = 220 pages ~ 1 million!
« Use sparse multi-level page tables > reduce page table size

: . Linear Address
For 32 bit x86: st 22 21 e .
° Page Size- | Directory‘ Table ‘ Offset |
. 212= 4096 bytes JE 4-KByte Page
« Page table: 10 10  Page Table Physical Address
. 210 page entries Page Directory
« Page directory: > PTE -
e 210 page tables : PDE with PS=0 72()4»

32

CR3
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The memory translation process

 The MMU splits the virtual (or “linear”) address coming from the
CPU into three parts:

* 10 bits (31-22) page directory entry (PDE) number
* 10 bits (21-12) page directory entry (PTE) number
« 12 bits (11-0) page offset inside the references page (untranslated)

Translation process:

Linear Address

1. Read PDE entry from directory: AN S 12 11 0
> address of one page table Directory | Table | Offet |
2. Read PTE entry from table: JEZ 4-KByte Page
> physical base address . 0 Page Table Physical Address
of memory page Page Directory Q
3. Add offset from original 2]
virtual address (bits 11-0) ) > PTE %
to obtain the complete : PDE with PS=0 |-
physical memory address 2 —
R3
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Speeding up translation

100,000

* Where is the page table stored? !
« Can be several MB in size
> doesn’t fit on the CPU chip! Pmm/i;:;eoj:;{y:gzg
 Page directory and page tables - M

are in main memory! 1980 1985 1990 1995 2000 2005 2010

Using virtual memory address translation requires
three main memory accesses!

« Same idea as with regular slow memory access: use cache!

The MMU uses a special cache on the CPU chip:
the Translation Lookaside Buffer (TLB)

« Caches commonly (most often”? most recently?) used PTEs
* The locality principle at work again
More details on this an upcoming lecture...
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What about the operating system?

* New hardware capabilities have to be used efficiently

* The operating system has to manage and multiplex the
related resources

> The OS has to adapt to new hardware capabilities!
> |t has to provide code for all new capabilities

> These often interact with other parts of the system, making
the overall OS more complex

« A modern OS also has to ensure adherence to non-
functional requirements (security, energy, real-time, ...)

 The OS has to do more bookkeeping and statistics

« Some of the non-functional properties contradict each other

« Unexpected problems may show up (Meltdown, Spectre [5,6])
* Finally, the OS itself has to be efficient!
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