B NTNU | sioncindrecnoivay

Operating Systems

Lecture 2: Resources and computer architecture

Michael Engel



Overview

« Structure of a typical computer system
« Basic elements
 |nstruction execution
 From von Neumann to modern computers
 Memory hierarchy
* Multiprocessing
« Communication
« Heterogeneous systems: GPGPUs
* Non-functional properties
« Security and virtual memory

@ NTNU | S oy Operating Systems 02: Resources and Computer Archit. 2



Computers as they are no more

« The typical diagram of a von Neumann-style computer system in an
introductory course of computer architecture [1]
(this diagram only models very simple microcontrollers today):

instructions

data
08| @ g 3
= % ol s: (@f%\‘?“  Addressable unified memory for code
= =5 (@0 and data

* 1/O devices in the same or a different
address range

» Optional: Interrupts notify CPU of the
completion of an I/O operation

» Optional: I/0O devices can use DMA
to transfer data to memory without
CPU interaction

Device

@ NTNU | S oy Operating Systems 02: Resources and Computer Archit. 3



Asynchronous execution: interrupts

instructions Polling:
write(device, command)
data while (not ready(device)) {
// just wait and waste time!
}
Yy R read(device, data)
"(7)' Qr P
o9 2 2. S
=z| §| s: ((\e%g\‘?“ Interrupt driven:
[l [l | 0\ ,'
— 6\\?'0%6%\ write(device, command)
- /'2}0 // do something else.....................

gl Interrupt:
> read(device, data)

Access to I/O devices is often slow
* Polling sends a command and then waits until the device
returns data
» With interrupts, the device notifies the program when data is ready
« This changes the control flow the CPU executes!

* More complex to develop software for

@ N'TINU | Sorwegian University of Operating Systems 02: Resources and Computer Archit. 4

Science and Technology



Computers as they are no more

« (Going a bit more into details:
CPU

» Components of the computer
Data path Control Unit are connected by buses

ALU (CU) « Address bus:

identify component
» Data bus:

transfer information

Data bus » Control bus:

metainformation
(read/write, interrupt, ...)

— not shown here
@ NTNU | S oy Operating Systems 02: Resources and Computer Archit. 5

Address bus

 CPU has control over the bus
* Exception: DMA




Instruction execution

CPU

Control Unit

Fetch Unit PC 3050

Data path — Control Unit

ALU (CU) Decode Unit

IR MOV R1, #42
Execute Unit

Address bus

Data bus

Address from program counter (PC)

Instruction bit pattern to
instruction register (IR)

10111001001100...1

PC = <reset address> // initialize PC 10111000101100...1
IR = memory[PC] // fetch first instruction 10100000111000...0
haltFlag = false
while (not haltFlag) {
execute(IR) // execute
PC=PC+4 // address of next instr.
IR = memory[PC] // fetch it!

10111010001100...1

}

@ NTNU | S oy Operating Systems 02: Resources and Computer Archit. 6



Getting a bit more real

« Simple model of execution only works efficiently if the speed of
memory = speed of the CPU

« This was the case until ca. 1980
 Memory speed only improved ~6%/year
« Today: “memory gap:
« CPU speed ~ 10,000x faster, but memory speed only ~ 10x

100,000

S
10,000 ///f/.)"/

1,000 |

Processor-Memory
Performance Gap

Processor

s
o
o

Performance

10
Memory

1 L ) ) )
1980 1985 1990 1995 2000 2005 2010
Year

@ NTNU | S oy Operating Systems 02: Resources and Computer Archit. 7



Introducing a memory hierarchy

« |dea: introduce caches
« small, but fast intermediate levels of memory
« Caches can only hold a partial copy of the whole memory
« Unified caches vs. separate instruction and data caches
« Expensive to manufacture (= small)
« Later: introduction of multiple levels of cache (L1, L2, L3...)
« Each one bigger but slower than the previous one
« Caches work efficiently due to locality principles [2]:

« temporal locality: a program accessing some part of memory is
likely to access the same memory soon thereafter

 spatial locality: a program accessing some part of memory is
likely to access nearby memory next

© N'TINU | Sonwegian University of Operating Systems 02: Resources and Computer Archit. 8

Science and Technology



Introducing a memory hierarchy

/\
The further from the CPU: 100 Byte 1ns
* Increasing size
- 10 kB 5ns
 Decreasing speed

~~~~~ = = E B
. > » - = . - o - ox

R e R Operating Systems 02: Resources and Computer Archit.

9



Memory impact: non-functional properties

W DRAM @B SRAM [0 Integer [] FP

Memory has a large influence on g 100% i 3]
non-functional properties of a system > ™" ||
* Average, best, and worst case f 40
performance, throughput and £ 0%
latencies RS e
« Power and energy consumption R Gl
. Reliability and security _ tZcachesize
20 L1 cachfe size V‘ — i
Non-functional properties depend o 2 7
on many parameters of memory, e.g. £ 2 :
« Cache architecture % 15 V —
 Memory type g 10| sagr e
« Alignment and aliasing of data 3 eSS o
O T T 1 T T "]
210 913 916 919 922 935 9o

@ NTNU | S oy Operating Systems 02: Resoufdesking SenfraeBitebjt. 10



When one processor is hot enough

@ NTNU

Moore’s Law (1965) [4]:

« observation that the number of transistors in a dense integrated
circuit (IC) doubles about every two years

« Accordingly, increase in CPU speed due to smaller semiconductor

structures

This development is
hitting physical
limitations

« CPU frequencies
“stuck” at ~3 GHz

* Energy consump-
tion is additional
limiting factor

Norwegian University of
Science and Technology

42 Years of Microprocessor Trend Data

W - Transistor:
A ‘A 4 thousands
6 - AsA .
10 » i&f A ;;
10° F s ants | Single-Thread
gha'a* - Pg§rformance o
. R 11, X (ShecINT x 10%)
10 - Aﬁ‘} ;ﬁ‘ -
el *‘ =] equency (MHz)
10% | N 'G;‘;,'! e
. .
2 4 & .*l .. - i‘*‘ e Typical Power
10° | A... g m oy Yy ¥LIRE YY) e o (Watts)
A ..= g "v v v vy * * ‘
1 - L'y 4 yr v .n." Number of
100 Vo R R . :
- . v $ Logical Cores
A - - v YvY wvvw ° “5
0L )¢ % _
1 0 s * * * SO & W NG NINNND ¢
1 1 1 1
1970 980 1990 2000 2010 2020
Year
Original data up 10 the year 2010 collected and plotted by M. Horowitz, F. Labonte, O, Shacham, K, Olukotun, L. Hammond, and C, Batten

New plot and data collected for 2010-2017 by K. Rupp

Operating Systems 02: Resources and Computer Archit. 11



When one processor is hot enough

« What can we do with all these transistors?
« Bigger caches — energy hungry and prone to faults!

> Put more processors on a chip!
« Earlier high-end systems already used multiple separate

processor chips
* Old as well as new problems:
 Memory throughput now has
to satisfy demands of n processors
us
Data bus

« Software now has to Address b
multiple processors!

« Caches need to be coherent ‘
so they hold the same copies Device Device
of main memory data

support execution on
@ NTNU | S oy Operating Systems 02: Resources and Computer Archit. 12




More processors, more memories

 Memory throughput now has to satisfy demands
of n processors

* Provide each processor with its own main memory!

* NUMA
“non unified memory
architecture”

 And new problems show up:

* How to access data in 2
another CPU’s memory? Address bus

Memory

. Who decides which CPU  Databus

is allowed to use the bus?

?
 |s acommon bus still Device Device
efficient?

@ NTNU | S oy Operating Systems 02: Resources and Computer Archit. 13




A NUMA system board

PCle
/O bus
slots
Memory
banks local Memory
to CPU 1 ~banks local
to CPU 2
CPU1
- CPU2
5 e e ! { i - _ :
[HP 2820 mainboard from Wikimedia by Jud McCranie CC BY-SA 4.0]
@ NTNU \ glc?gwfegfﬁdugzﬁf%go; Operating Systems 02: Resources and Computer Archit. 14


https://commons.wikimedia.org/wiki/User:Bubba73

On-chip communication

* Use high-speed networks instead of conventional buses
* Using ideas from computer networking

* On-chip network can achieve high throughput and low
latencies

« Example: on-chip ring network connecting 6 CPUs, a
system controller (“agent”) and a GPU

Core Core

Me: Sl:bsys _g 3.!03 G % B.IO:) ('; _g GJOD E
& ndd : & ndd : & ndd :
[ B o]
)«E GPU
] o e
System G
ks CPU CPU CPU ﬂ
5

[ L3 Cache |
ayded €1

[ L3 Cache |
ayded g1

[ L3 Cache |

Core

@ N'TINU | Sorwegian University of Operating Systems 02: Resources and Computer Archit. 15

Science and Technology



Heterogeneous systems: GPGPUs

* In modern computers, not only CPUs can execute code
« GPGPUs (general purpose graphics processing units)
« Massively parallel processors for typical parallel tasks

« 3D graphics, signal processing, machine learning, bitcoin
mining...

* Few features for protection, security...

« Traditionally, GPUs were accessible to a single program only
(in Unix: “X window server”) for drawing

« Other programs had to ask the X server for services

* In modern systems, multiple programs want direct access to
the GPGPU

* How can the OS multiplex the GPGPU safely and
securely?

@ NTNU | S oy Operating Systems 02: Resources and Computer Archit. 16



Security

...there’s another important non-functional property!

Multiple programs running simultaneously

* e.g. aonline banking application
and a video player

 How can be avoid the video player
accessing memory of the banking app?
* e.g. your account number and

password, which the video player
could share online!

» Restrict access to non permitted Address bus
memory ranges Data bus

 The memory management
unit (MMU) only makes memory
ranges visible to a running program
“belonging” to it

@ NTNU | S oy Operating Systems 02: Resources and Computer Archit. 17




The MMU

« |dea: intercept “virtual” addresses generated by the CPU
« MMU checks for “allowed” addresses

» It translates allowed addresses to “physical” addresses in main memory
using a translation table

* Problem: translation table for each single address would be large
« Split memory into pages of identical size (power of 2)

* Apply the same translation to all addresses in the page:
page table

 MMUs were originally separate ICs
sitting between CPU and RAM
« Or even realised using discrete
components (e.g. in the Sun 1 [8]) Niotorol
« Higher integration due to Moore's 68451 MMU

Law > fit on CPU chip now! chip (1982) [7]

@ NTNU | S oy Operating Systems 02: Resources and Computer Archit.

[Wikimedia by David Monniaux,

—_
(o]

CC BY-SA 3.0]



Page table structure

« Split memory into pages of identical size (power of 2)
* Apply the same translation to all addresses in the page: page table
« Find a compromise page size allowing flexibility and efficiency
« Typically several kB: 4 kB=212 bytes (x86), 16 kB (Apple M1)
« 32 bit CPU (232 addr.): 4 kB pages > 232/212 = 220 pages ~ 1 million!
« Use sparse multi-level page tables > reduce page table size

: . Linear Address
For 32 bit x86: st 22 21 e .
° Page Size- | Directory‘ Table ‘ Offset |
. 212= 4096 bytes JE 4-KByte Page
« Page table: 10 10  Page Table Physical Address
. 210 page entries Page Directory
« Page directory: > PTE -
e 210 page tables : PDE with PS=0 72()4»

32

CR3

@ NTNU | S oy Operating Systems 02: Resources and Computer Archit. 19




The memory translation process

 The MMU splits the virtual (or “linear”) address coming from the
CPU into three parts:

* 10 bits (31-22) page directory entry (PDE) number
* 10 bits (21-12) page directory entry (PTE) number
« 12 bits (11-0) page offset inside the references page (untranslated)

Translation process:

Linear Address

1. Read PDE entry from directory: AN S 12 11 0
> address of one page table Directory | Table | Offet |
2. Read PTE entry from table: JEZ 4-KByte Page
> physical base address . 0 Page Table Physical Address
of memory page Page Directory Q
3. Add offset from original 2]
virtual address (bits 11-0) ) > PTE %
to obtain the complete : PDE with PS=0 |-
physical memory address 2 —
R3

@ NTNU | S oy Operating Systems 02: Resources and Computer Archit. 20



Speeding up translation

100,000

* Where is the page table stored? !
« Can be several MB in size
> doesn’t fit on the CPU chip! Pmm/i;:;eoj:;{y:gzg
 Page directory and page tables - M

are in main memory! 1980 1985 1990 1995 2000 2005 2010

Using virtual memory address translation requires
three main memory accesses!

« Same idea as with regular slow memory access: use cache!

The MMU uses a special cache on the CPU chip:
the Translation Lookaside Buffer (TLB)

« Caches commonly (most often”? most recently?) used PTEs
* The locality principle at work again
More details on this an upcoming lecture...

@ NTNU | S oy Operating Systems 02: Resources and Computer Archit. 21



What about the operating system?

* New hardware capabilities have to be used efficiently

* The operating system has to manage and multiplex the
related resources

> The OS has to adapt to new hardware capabilities!
> |t has to provide code for all new capabilities

> These often interact with other parts of the system, making
the overall OS more complex

« A modern OS also has to ensure adherence to non-
functional requirements (security, energy, real-time, ...)

 The OS has to do more bookkeeping and statistics

« Some of the non-functional properties contradict each other

« Unexpected problems may show up (Meltdown, Spectre [5,6])
* Finally, the OS itself has to be efficient!

@ NTNU | S oy Operating Systems 02: Resources and Computer Archit. 22



References

1. John von Neumann, First Draft of a Report on the EDVAC, 1945 — reproduced in
IEEE Annals of the History of Computing, vol. 15, no. 4, pp. 27-75, 1993

2. U. Drepper, What Every Programmer Should Know About Memory, RedHat Inc., 2007

3. R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, P. Marwedel, Scratchpad memory:
design alternative for cache on-chip memory in embedded systems, Proceedings of the
tenth international symposium on hardware/software codesign, 2002

4. Gordon E. Moore, Gordon E., Cramming more components onto integrated circuits,
Reprinted from Electronics, volume 38, number 8, April 19, 1965, pp.114 ff.,
in IEEE Solid-State Circuits Society Newsletter, vol. 11, no. 3, pp. 33-35, Sept. 2006

5. Moritz Lipp et al., Meltdown: Reading Kernel Memory from User Space, 27th USENIX
Security Symposium 2018

6. Paul Kocher et al., Spectre Attacks: Exploiting Speculative Execution, 40th IEEE
Symposium on Security and Privacy 2019

7. Motorola Semiconductors Inc., MC68451 Memory Management Unit, document nr.
ADI-872-R1, 1983

8. Sun Microsystems Inc., Sun-1 System Reference Manual, P/N 800-0345, 1982

@ NTNU | S oy Operating Systems 02: Resources and Computer Archit. 23



