
Operating Systems

Theoretical Exercise 6: Solutions

Michael Engel

Operating systems TE6 2

6.1 EDF scheduling
Suppose that we have a set of four jobs. Release times ri, deadlines Di, and
execution times Ci are as follows: (Deadlines are given as absolute time!)
• J1: r1=10, D1=18, C1=4
• J2: r2=0, D2=28, C2=12
• J3: r3=6, D3=17, C3=3
• J4: r4=3, D4=13, C4=6
Generate a graphical representation of schedules for this job set, using the earliest
deadline first (EDF) scheduling algorithm.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

J1

J2

J3

J4

J4 arrives with
earlier deadline

J3 arrives, later
deadline ➛ wait

J4 finished its 6
cycles ➛ switch

J1 arrives, later
deadline ➛ wait

J3 finished its 3
cycles ➛ switch

J1 finished its 4
cycles ➛ switch

Operating systems TE6 3

6.2 Rate-monotonic scheduling
Suppose that we have a system comprising two tasks. Task 1 has a period of 5
and an execution time of 2. The second task has a period of 7 and an execution
time of 4. Let the deadlines be equal to the periods. Assume that we are using
rate monotonic scheduling (RMS).
a. Could any of the two tasks miss its deadline, due to a too high processor
utilization?
b. Compute this utilization, and compare it to a bound which would guarantee
schedulability!

Necessary RMS condition:
For a single processor and for n tasks, the
accumulated utilization Usum does not exceed
the following bound (Ti = Di for RMS!)

 = 2/5 + 4/7 = 0.4 + 0.571 = 0.971 > 0.828

=> schedulability cannot be guaranteed, a task could miss its deadline!

312 6 Application Mapping

Definition 6.10 For periodic and sporadic task systems τ = {τ1, .., τn}, we define
task utilization as

ui =
Ci

Ti
(6.4)

This means that for sporadic task systems, we are using the same definition as for
periodic systems, even though Ti just denotes the minimum separation of jobs.

Definition 6.11 For a task system τ = {τ1 . . . τn} with utilization ui of task τi , we
define the maximum and the total utilization by

Umax = max
i

(ui) (6.5)

Usum =
∑

i

ui (6.6)

Rate Monotonic Scheduling

Rate monotonic (RM) scheduling [348] is probably the most well-known scheduling
algorithm for independent periodic tasks. Rate monotonic scheduling is based on the
following assumptions (“RM assumptions”):

1. All tasks that have hard deadlines are periodic.
2. All tasks are independent.
3. Di = Ti , for all tasks.
4. Ci is constant and is known for all tasks. Self-suspension (voluntarily relinquish-

ing the execution) is not allowed.
5. The time required for context switching is negligible.
6. For a single processor and for n tasks, the accumulated utilization Usum does not

exceed the following bound:

Usum =
n∑

i=1

Ci

Ti
≤ n(21/n − 1) (6.7)

Figure 6.12 shows the bound of constraint (6.7).
The bound is about 0.7 for large n:

lim
n→∞ n ∗ (21/n − 1) = loge(2) = ln(2) ≈ 0.7 (6.8)

Then, according to the policy for rate monotonic scheduling, the priority of
tasks is a monotonically decreasing function of their period. In other words,
tasks with a short period will get a high priority, and tasks with a long period will

6.2 Scheduling for Uniprocessors 313

Fig. 6.12 Bound of
constraint (6.7) nn (2 -1)

1

0.2
0.4
0.6

1
0.8

1 3 4 5 6 72 8

0.
72

8

0.
72

4

0.
73

4

0.
74

3

0.
75

7

0.
78

0

0.
82

8

1

n

Fig. 6.13 Example of a schedule generated with RM scheduling ∇

be assigned a low priority. RM scheduling is a preemptive scheduling policy with
fixed priorities.

Example 6.6 Figure 6.13 shows a schedule generated with RM scheduling. Task τ2
is preempted several times. Double-headed arrows indicate the arrival time of a job
as well as the deadline of the previous job. Tasks τ1 to τ3 have a period of 2, 6, and
6, respectively. Execution times are 0.5, 2, and 1.75. Task τ1 has the shortest period
and, hence, the highest rate and priority. Each time task τ1 becomes available, its
jobs preempt the currently active task. Task τ2 has the same period as task τ3, and
neither of them preempts the other.

Constraint (6.7) requires that some of the computing power of the processor is
not used in order to make sure that all requests are honored in time. What is the
reason for this bound on the utilization? The key reason is that RM scheduling, due
to its static priorities, will possibly preempt a task which is close to its deadline in
favor of some higher-priority task with a much later deadline. The task having a
lower priority can then miss its deadline.

Example 6.7 In Fig. 6.14, task parameters are T1 = 5, C1 = 3, T2 = 8, and C2 =
3. In this case, we have Usum = 3

5+ 3
8 = 39

40 = 0.975. This value exceeds the bound:

2 ∗ (21
2 − 1) ≈ 0.828. Not enough idle time is available to guarantee schedulability

for RM scheduling. Hence, schedulability is not guaranteed for RM scheduling, and
in fact, the deadline is missed at time 8. We assume that the missing computations
are not scheduled in the next period. ∇

Such missed deadlines cannot happen if the utilization of the processor is very
low, and obviously, they can happen when the utilization is high, as in Fig. 6.14.

Operating systems TE6 4

6.2 Rate-monotonic scheduling
Suppose that we have a system comprising two tasks. Task 1 has a period of 5
and an execution time of 2. The second task has a period of 7 and an execution
time of 4. Let the deadlines be equal to the periods. Assume that we are using rate
monotonic scheduling (RMS).
c. Generate a graphical representation of the resulting schedule! Suppose that
tasks will always run to their completion, even if they missed their deadline.

For RMS, the priority of tasks is a monotonically decreasing function of their period
=> a task with lower priority is preempted when a task with higher priority
arrives: T1 has the higher priority and can preempt T2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

T1

T2

Deadline missed! Iteration 2 of
T2 starts here

Iteration 3 of
T2 starts here

Operating systems TE6 5

6.3 Priority inversion
Let A, B, and C be three tasks with priorities A=1 (highest), B=3, C=5
(lowest). Tasks A and C use a shared resource (e.g. shared memory)
protected by a semaphore. The execution of the tasks is shown in fig. 1:

Tasks
are activated
(once only)
at these times:

A: t = 2T
B: t = 4T
C: t = 0T

Department of Computer Science – IDI TDT4186 Operating Systems

Industrial Automation Exercise 4: Synchronization with Semaphores 3

Question 4:Synchronization with Semaphores

The Priority-Inversion Problem
In this question we want to look at the priority-inversion problem for the synchronization of
processes with semaphores. In order to illustrate the problem, we have a look at a simple
scenario first.

Scenario 1:
Let A, B, and C be three tasks with descending priorities, where A has the highest priority (1).
The tasks A and C use a common resource (e.g. a memory area). This resource is protected
against simultaneous access with a semaphore. Figure 4.1 shows the structure of the three
tasks of scenario 1. The respective execution times are written next to the dotted lines
(program code).

TASK A
Prio 1

TASK B
Prio 2

TASK C
Prio 3

P(S)

V(S)

T

End End

T

P(S)

V(S)

End

T

T

5T2T 3T

Figure 4.1: Structure of the tasks of scenario 1

The tasks are activated (only once) at the following times:

task A: t = 2T
task B: t = 4T
task C: t = 0T

Remark:
In this question, we assume preemptive scheduling with fixed priorities. The initial values of
all semaphore variables are 1.

a) Draw in figure 4.3 the desired execution sequence for the time interval 0 ≤ t ≤ 14T. (The
state „idle“ is not to be depicted in the diagram). Draw in figure 4.4 the actual execution
sequence with the according task states of the three tasks for the time interval 0 ≤ t ≤ 14T.

b) Let us assume, that there would be further processes with priorities between those of A
and C which do not access the common memory area (no semaphore operations). The

Figure 1: Execution of the tasks

The tasks are activated (once only) at the following time points:

• A: t = 2T

• B: t = 4T

• C: t = 0T

a. Use fig. 2 to visualize the desired execution sequence for the time interval 0  t  14T.

b. Use fig. 3 to visualize the actual execution sequence with the according tasks states of the three tasks for the
time interval 0  t  14T.

c. Assume these are additional tasks with priorities between those of A and C which do not access the shared
resource (no semaphores used). These tasks’ individual priorities and execution times are not known. How long
would the high priority tasks A be delayed in the worst case, then?

Industrial Automation Exercise 4: Synchronization with Semaphores 8

Solution sheet 1 for question 4

t/T

running

running

running

Task A

Task B

Task C

0 2 4 6 8 10 12 14
Figure 4.3: Desired execution sequence of the processes in scenario 1

t/T

ready

running
blocked

ready

running
blocked

ready

running
blocked

Task A

Task B

Task C

0 2 4 6 8 10 12 14
Figure 4.4: Actual execution sequence of the processes in question a)

t/T

ready

running
blocked

ready

running
blocked

ready

running
blocked

Task A

Task B

Task C

0 2 4 6 8 10 12 14
Figure 4.5: Actual execution sequence of the processes in question c)

Figure 2: Desired execution sequence

Operating systems TE6 6

6.3 Priority inversion
Priorities A=1 (highest), B=3, C=5 (lowest).
Tasks A and C use a shared resource:

Tasks are activated at
A: t = 2T B: t = 4T C: t = 0T

a. Use fig. 2 to visualize the desired
execution sequence for the time interval
0 ≤ t ≤ 14T. Desired = without blocking due to priority inversion!

Department of Computer Science – IDI TDT4186 Operating Systems

Industrial Automation Exercise 4: Synchronization with Semaphores 3

Question 4:Synchronization with Semaphores

The Priority-Inversion Problem
In this question we want to look at the priority-inversion problem for the synchronization of
processes with semaphores. In order to illustrate the problem, we have a look at a simple
scenario first.

Scenario 1:
Let A, B, and C be three tasks with descending priorities, where A has the highest priority (1).
The tasks A and C use a common resource (e.g. a memory area). This resource is protected
against simultaneous access with a semaphore. Figure 4.1 shows the structure of the three
tasks of scenario 1. The respective execution times are written next to the dotted lines
(program code).

TASK A
Prio 1

TASK B
Prio 2

TASK C
Prio 3

P(S)

V(S)

T

End End

T

P(S)

V(S)

End

T

T

5T2T 3T

Figure 4.1: Structure of the tasks of scenario 1

The tasks are activated (only once) at the following times:

task A: t = 2T
task B: t = 4T
task C: t = 0T

Remark:
In this question, we assume preemptive scheduling with fixed priorities. The initial values of
all semaphore variables are 1.

a) Draw in figure 4.3 the desired execution sequence for the time interval 0 ≤ t ≤ 14T. (The
state „idle“ is not to be depicted in the diagram). Draw in figure 4.4 the actual execution
sequence with the according task states of the three tasks for the time interval 0 ≤ t ≤ 14T.

b) Let us assume, that there would be further processes with priorities between those of A
and C which do not access the common memory area (no semaphore operations). The

Figure 1: Execution of the tasks

The tasks are activated (once only) at the following time points:

• A: t = 2T

• B: t = 4T

• C: t = 0T

a. Use fig. 2 to visualize the desired execution sequence for the time interval 0  t  14T.

b. Use fig. 3 to visualize the actual execution sequence with the according tasks states of the three tasks for the
time interval 0  t  14T.

c. Assume these are additional tasks with priorities between those of A and C which do not access the shared
resource (no semaphores used). These tasks’ individual priorities and execution times are not known. How long
would the high priority tasks A be delayed in the worst case, then?

Industrial Automation Exercise 4: Synchronization with Semaphores 8

Solution sheet 1 for question 4

t/T

running

running

running

Task A

Task B

Task C

0 2 4 6 8 10 12 14
Figure 4.3: Desired execution sequence of the processes in scenario 1

t/T

ready

running
blocked

ready

running
blocked

ready

running
blocked

Task A

Task B

Task C

0 2 4 6 8 10 12 14
Figure 4.4: Actual execution sequence of the processes in question a)

t/T

ready

running
blocked

ready

running
blocked

ready

running
blocked

Task A

Task B

Task C

0 2 4 6 8 10 12 14
Figure 4.5: Actual execution sequence of the processes in question c)

Figure 2: Desired execution sequence

Department of Computer Science – IDI TDT4186 Operating Systems

Industrial Automation Exercise 4: Synchronization with Semaphores 3

Question 4:Synchronization with Semaphores

The Priority-Inversion Problem
In this question we want to look at the priority-inversion problem for the synchronization of
processes with semaphores. In order to illustrate the problem, we have a look at a simple
scenario first.

Scenario 1:
Let A, B, and C be three tasks with descending priorities, where A has the highest priority (1).
The tasks A and C use a common resource (e.g. a memory area). This resource is protected
against simultaneous access with a semaphore. Figure 4.1 shows the structure of the three
tasks of scenario 1. The respective execution times are written next to the dotted lines
(program code).

TASK A
Prio 1

TASK B
Prio 2

TASK C
Prio 3

P(S)

V(S)

T

End End

T

P(S)

V(S)

End

T

T

5T2T 3T

Figure 4.1: Structure of the tasks of scenario 1

The tasks are activated (only once) at the following times:

task A: t = 2T
task B: t = 4T
task C: t = 0T

Remark:
In this question, we assume preemptive scheduling with fixed priorities. The initial values of
all semaphore variables are 1.

a) Draw in figure 4.3 the desired execution sequence for the time interval 0 ≤ t ≤ 14T. (The
state „idle“ is not to be depicted in the diagram). Draw in figure 4.4 the actual execution
sequence with the according task states of the three tasks for the time interval 0 ≤ t ≤ 14T.

b) Let us assume, that there would be further processes with priorities between those of A
and C which do not access the common memory area (no semaphore operations). The

Figure 1: Execution of the tasks

The tasks are activated (once only) at the following time points:

• A: t = 2T

• B: t = 4T

• C: t = 0T

a. Use fig. 2 to visualize the desired execution sequence for the time interval 0  t  14T.

b. Use fig. 3 to visualize the actual execution sequence with the according tasks states of the three tasks for the
time interval 0  t  14T.

c. Assume these are additional tasks with priorities between those of A and C which do not access the shared
resource (no semaphores used). These tasks’ individual priorities and execution times are not known. How long
would the high priority tasks A be delayed in the worst case, then?

Industrial Automation Exercise 4: Synchronization with Semaphores 8

Solution sheet 1 for question 4

t/T

running

running

running

Task A

Task B

Task C

0 2 4 6 8 10 12 14
Figure 4.3: Desired execution sequence of the processes in scenario 1

t/T

ready

running
blocked

ready

running
blocked

ready

running
blocked

Task A

Task B

Task C

0 2 4 6 8 10 12 14
Figure 4.4: Actual execution sequence of the processes in question a)

t/T

ready

running
blocked

ready

running
blocked

ready

running
blocked

Task A

Task B

Task C

0 2 4 6 8 10 12 14
Figure 4.5: Actual execution sequence of the processes in question c)

Figure 2: Desired execution sequence

Operating systems TE6 7

6.3 Priority inversion
Priorities A=1 (highest), B=3, C=5 (lowest).
Tasks A and C use a shared resource:
Tasks are activated at
A: t = 2T B: t = 4T C: t = 0T

b. Use fig. 3 to visualize the actual execution
sequence with the according tasks states of
the three tasks for the
time interval 0 ≤ t ≤ 14T.

Department of Computer Science – IDI TDT4186 Operating Systems

Industrial Automation Exercise 4: Synchronization with Semaphores 3

Question 4:Synchronization with Semaphores

The Priority-Inversion Problem
In this question we want to look at the priority-inversion problem for the synchronization of
processes with semaphores. In order to illustrate the problem, we have a look at a simple
scenario first.

Scenario 1:
Let A, B, and C be three tasks with descending priorities, where A has the highest priority (1).
The tasks A and C use a common resource (e.g. a memory area). This resource is protected
against simultaneous access with a semaphore. Figure 4.1 shows the structure of the three
tasks of scenario 1. The respective execution times are written next to the dotted lines
(program code).

TASK A
Prio 1

TASK B
Prio 2

TASK C
Prio 3

P(S)

V(S)

T

End End

T

P(S)

V(S)

End

T

T

5T2T 3T

Figure 4.1: Structure of the tasks of scenario 1

The tasks are activated (only once) at the following times:

task A: t = 2T
task B: t = 4T
task C: t = 0T

Remark:
In this question, we assume preemptive scheduling with fixed priorities. The initial values of
all semaphore variables are 1.

a) Draw in figure 4.3 the desired execution sequence for the time interval 0 ≤ t ≤ 14T. (The
state „idle“ is not to be depicted in the diagram). Draw in figure 4.4 the actual execution
sequence with the according task states of the three tasks for the time interval 0 ≤ t ≤ 14T.

b) Let us assume, that there would be further processes with priorities between those of A
and C which do not access the common memory area (no semaphore operations). The

Figure 1: Execution of the tasks

The tasks are activated (once only) at the following time points:

• A: t = 2T

• B: t = 4T

• C: t = 0T

a. Use fig. 2 to visualize the desired execution sequence for the time interval 0  t  14T.

b. Use fig. 3 to visualize the actual execution sequence with the according tasks states of the three tasks for the
time interval 0  t  14T.

c. Assume these are additional tasks with priorities between those of A and C which do not access the shared
resource (no semaphores used). These tasks’ individual priorities and execution times are not known. How long
would the high priority tasks A be delayed in the worst case, then?

Industrial Automation Exercise 4: Synchronization with Semaphores 8

Solution sheet 1 for question 4

t/T

running

running

running

Task A

Task B

Task C

0 2 4 6 8 10 12 14
Figure 4.3: Desired execution sequence of the processes in scenario 1

t/T

ready

running
blocked

ready

running
blocked

ready

running
blocked

Task A

Task B

Task C

0 2 4 6 8 10 12 14
Figure 4.4: Actual execution sequence of the processes in question a)

t/T

ready

running
blocked

ready

running
blocked

ready

running
blocked

Task A

Task B

Task C

0 2 4 6 8 10 12 14
Figure 4.5: Actual execution sequence of the processes in question c)

Figure 2: Desired execution sequence

Department of Computer Science – IDI TDT4186 Operating Systems

Industrial Automation Exercise 4: Synchronization with Semaphores 8

Solution sheet 1 for question 4

t/T

running

running

running

Task A

Task B

Task C

0 2 4 6 8 10 12 14
Figure 4.3: Desired execution sequence of the processes in scenario 1

t/T

ready

running
blocked

ready

running
blocked

ready

running
blocked

Task A

Task B

Task C

0 2 4 6 8 10 12 14
Figure 4.4: Actual execution sequence of the processes in question a)

t/T

ready

running
blocked

ready

running
blocked

ready

running
blocked

Task A

Task B

Task C

0 2 4 6 8 10 12 14
Figure 4.5: Actual execution sequence of the processes in question c)

Figure 3: Actual execution sequence

P(S)

P(S) in A blocks,
since C holds S

B starts due
to higher prio

A starts due
to higher prio

B ready,
highest prio

V(S)

V(S)

A can finally
acquire S

B is finished,
A blocked
=> C runs

A finished

C finished

Whoops, messed this up – wrong
I/O times & start times of A and B!

Operating systems TE6 8

6.3 Priority inversion
Priorities A=1 (highest), B=3, C=5 (lowest).
Tasks A and C use a shared resource:
Tasks are activated at
A: t = 2T B: t = 4T C: t = 0T

b. Use fig. 3 to visualize the actual execution
sequence with the according tasks states of
the three tasks for the
time interval 0 ≤ t ≤ 14T.

Department of Computer Science – IDI TDT4186 Operating Systems

Industrial Automation Exercise 4: Synchronization with Semaphores 3

Question 4:Synchronization with Semaphores

The Priority-Inversion Problem
In this question we want to look at the priority-inversion problem for the synchronization of
processes with semaphores. In order to illustrate the problem, we have a look at a simple
scenario first.

Scenario 1:
Let A, B, and C be three tasks with descending priorities, where A has the highest priority (1).
The tasks A and C use a common resource (e.g. a memory area). This resource is protected
against simultaneous access with a semaphore. Figure 4.1 shows the structure of the three
tasks of scenario 1. The respective execution times are written next to the dotted lines
(program code).

TASK A
Prio 1

TASK B
Prio 2

TASK C
Prio 3

P(S)

V(S)

T

End End

T

P(S)

V(S)

End

T

T

5T2T 3T

Figure 4.1: Structure of the tasks of scenario 1

The tasks are activated (only once) at the following times:

task A: t = 2T
task B: t = 4T
task C: t = 0T

Remark:
In this question, we assume preemptive scheduling with fixed priorities. The initial values of
all semaphore variables are 1.

a) Draw in figure 4.3 the desired execution sequence for the time interval 0 ≤ t ≤ 14T. (The
state „idle“ is not to be depicted in the diagram). Draw in figure 4.4 the actual execution
sequence with the according task states of the three tasks for the time interval 0 ≤ t ≤ 14T.

b) Let us assume, that there would be further processes with priorities between those of A
and C which do not access the common memory area (no semaphore operations). The

Figure 1: Execution of the tasks

The tasks are activated (once only) at the following time points:

• A: t = 2T

• B: t = 4T

• C: t = 0T

a. Use fig. 2 to visualize the desired execution sequence for the time interval 0  t  14T.

b. Use fig. 3 to visualize the actual execution sequence with the according tasks states of the three tasks for the
time interval 0  t  14T.

c. Assume these are additional tasks with priorities between those of A and C which do not access the shared
resource (no semaphores used). These tasks’ individual priorities and execution times are not known. How long
would the high priority tasks A be delayed in the worst case, then?

Industrial Automation Exercise 4: Synchronization with Semaphores 8

Solution sheet 1 for question 4

t/T

running

running

running

Task A

Task B

Task C

0 2 4 6 8 10 12 14
Figure 4.3: Desired execution sequence of the processes in scenario 1

t/T

ready

running
blocked

ready

running
blocked

ready

running
blocked

Task A

Task B

Task C

0 2 4 6 8 10 12 14
Figure 4.4: Actual execution sequence of the processes in question a)

t/T

ready

running
blocked

ready

running
blocked

ready

running
blocked

Task A

Task B

Task C

0 2 4 6 8 10 12 14
Figure 4.5: Actual execution sequence of the processes in question c)

Figure 2: Desired execution sequence

Department of Computer Science – IDI TDT4186 Operating Systems

Industrial Automation Exercise 4: Synchronization with Semaphores 8

Solution sheet 1 for question 4

t/T

running

running

running

Task A

Task B

Task C

0 2 4 6 8 10 12 14
Figure 4.3: Desired execution sequence of the processes in scenario 1

t/T

ready

running
blocked

ready

running
blocked

ready

running
blocked

Task A

Task B

Task C

0 2 4 6 8 10 12 14
Figure 4.4: Actual execution sequence of the processes in question a)

t/T

ready

running
blocked

ready

running
blocked

ready

running
blocked

Task A

Task B

Task C

0 2 4 6 8 10 12 14
Figure 4.5: Actual execution sequence of the processes in question c)

Figure 3: Actual execution sequence

P(S)

P(S) in A blocks,
since C holds S

B starts
due to
higher prio
than C

A continues due
to higher prio

V(S)

V(S)

A can finally
acquire S

B finished,
A blocked
=> C runs

A finished

C finished

This is the correct version!

finally
back to C

A ready, has
higher prio

Operating systems TE6 9

6.3 Priority inversion
Priorities A=1 (highest), B=3, C=5 (lowest).
Tasks A and C use a shared resource

c. Assume there are additional tasks with
priorities between those of A and C which do
not access the shared resource (no semaphores
used). These tasks’ individual priorities and
execution times are not known. How long would
the high priority task A be delayed in the worst case, then?

Additional tasks with priorities between A and C can delay the execution of task C
further => the absolute point in time at which C releases semaphore S is delayed

Accordingly, A could be delayed for an arbitrary amount of time

Department of Computer Science – IDI TDT4186 Operating Systems

Industrial Automation Exercise 4: Synchronization with Semaphores 3

Question 4:Synchronization with Semaphores

The Priority-Inversion Problem
In this question we want to look at the priority-inversion problem for the synchronization of
processes with semaphores. In order to illustrate the problem, we have a look at a simple
scenario first.

Scenario 1:
Let A, B, and C be three tasks with descending priorities, where A has the highest priority (1).
The tasks A and C use a common resource (e.g. a memory area). This resource is protected
against simultaneous access with a semaphore. Figure 4.1 shows the structure of the three
tasks of scenario 1. The respective execution times are written next to the dotted lines
(program code).

TASK A
Prio 1

TASK B
Prio 2

TASK C
Prio 3

P(S)

V(S)

T

End End

T

P(S)

V(S)

End

T

T

5T2T 3T

Figure 4.1: Structure of the tasks of scenario 1

The tasks are activated (only once) at the following times:

task A: t = 2T
task B: t = 4T
task C: t = 0T

Remark:
In this question, we assume preemptive scheduling with fixed priorities. The initial values of
all semaphore variables are 1.

a) Draw in figure 4.3 the desired execution sequence for the time interval 0 ≤ t ≤ 14T. (The
state „idle“ is not to be depicted in the diagram). Draw in figure 4.4 the actual execution
sequence with the according task states of the three tasks for the time interval 0 ≤ t ≤ 14T.

b) Let us assume, that there would be further processes with priorities between those of A
and C which do not access the common memory area (no semaphore operations). The

Figure 1: Execution of the tasks

The tasks are activated (once only) at the following time points:

• A: t = 2T

• B: t = 4T

• C: t = 0T

a. Use fig. 2 to visualize the desired execution sequence for the time interval 0  t  14T.

b. Use fig. 3 to visualize the actual execution sequence with the according tasks states of the three tasks for the
time interval 0  t  14T.

c. Assume these are additional tasks with priorities between those of A and C which do not access the shared
resource (no semaphores used). These tasks’ individual priorities and execution times are not known. How long
would the high priority tasks A be delayed in the worst case, then?

Industrial Automation Exercise 4: Synchronization with Semaphores 8

Solution sheet 1 for question 4

t/T

running

running

running

Task A

Task B

Task C

0 2 4 6 8 10 12 14
Figure 4.3: Desired execution sequence of the processes in scenario 1

t/T

ready

running
blocked

ready

running
blocked

ready

running
blocked

Task A

Task B

Task C

0 2 4 6 8 10 12 14
Figure 4.4: Actual execution sequence of the processes in question a)

t/T

ready

running
blocked

ready

running
blocked

ready

running
blocked

Task A

Task B

Task C

0 2 4 6 8 10 12 14
Figure 4.5: Actual execution sequence of the processes in question c)

Figure 2: Desired execution sequence

