B NTNU | sioncindrecnoivay

Operating Systems

Theoretical Exercise 6: Solutions

Michael Engel

6.1 EDF scheduling

Suppose that we have a set of four jobs. Release times ri, deadlines Di, and
execution times C; are as follows: (Deadlines are given as absolute time!)

«J1:r1=10, D1=18, C1=4
« J2:r2=0, D2=28, C2=12
* J3: r3=6, D3=17, C3=3
« J4:r4=3, D4=13, C4=6

Generate a graphical representation of schedules for this job set, using the earliest
deadline first (EDF) scheduling algorithm.

J1 arrives, later J1 finished its 4

dgadlind > |wajt | cyclds -+ swit¢h
J1 J4 ag:: es V\.I.i_th X
jeaUII 5 A

dl'l

2| [L [—
It |- |)3 figished|its]3

J3 clds - swit
ts
J4 itch

O 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Norwegian University of .
B NTNU ‘ Sciencgand Technolggy Operatmg SyStemS TE6 2

6.2 Rate-monotonic scheduling

Suppose that we have a system comprising two tasks. Task 1 has a period of 5
and an execution time of 2. The second task has a period of 7 and an execution
time of 4. Let the deadlines be equal to the periods. Assume that we are using
rate monotonic scheduling (RMS).

a. Could any of the two tasks miss its deadline, due to a too high processor
utilization?

b. Compute this utilization, and compare it to a bound which would guarantee
schedulability! 1

n(2n -1) e
Necessary RMS condition: ;8- ok %; S S RR R
For a single processor and for n tasks, the 0.6.
accumulated utilization Us.» does not exceed 041 | |}
the following bound (T; = D; for RMS!) 0.2 | 1=

n 11
C.
Usum =), — < n(2/" —1)=2/5+4/7=0.4+0.571 = 0.971 > 0.828
i=1 '

=> schedulability cannot be guaranteed, a task could miss its deadline!

Norwegian University of .
B NTNU ‘ Sciencgand Technolggy Operatmg SyStemS TE6

6.2 Rate-monotonic scheduling

Suppose that we have a system comprising two tasks. Task 1 has a period of 5
and an execution time of 2. The second task has a period of 7 and an execution
time of 4. Let the deadlines be equal to the periods. Assume that we are using rate
monotonic scheduling (RMS).

c. Generate a graphical representation of the resulting schedule! Suppose that
tasks will always run to their completion, even if they missed their deadline.

For RMS, the priority of tasks is a monotonically decreasing function of their period

=> a task with lower priority is preempted when a task with higher priority
arrives: T1 has the higher priority and can preempt T2

T1

T2

0O 1 2 3 4 5 6 MM8~r9 10 11 12 13 1% 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Deadline missed!

Norwegian University of .
B NTNU ‘ Sciencgand Technolggy Operatmg SyStemS TE6 4

6.3 Priority inversion

Let A, B, and C be three tasks with priorities A=1 (highest), B=3, C=5
(lowest). Tasks A and C use a shared resource (e.g. shared memory)
protected by a semaphore. The execution of the tasks is shown in fig. 1:

Tasks TASK A TASK B TASK C
are aCtivated Prio 1 Prio 2 Prio 3
I I
(once only) T | T
: v | |
at these times: oS | v
(I) | P(S)
|
A:t=2T o | 5T T
' | |
B:t=4T e | '
b o— | V(S)
v v v
End End End

Figure 1: Execution of the tasks

Norwegian University of .
E NTNU ‘ Sciencgand Technolggy Operatmg SyStemS TE6

6.3 Priority inversion

Priorities A=1 (highest), B=3, C=5 (lowest).

TA_SK A TASK B TASK C

Tasks A and C use a shared resource; Fre Proz Pro?
o 7 | i T

. P(S) | P(S)

Tasks are activated at | o |

: 2T : : 3T

A:t=2T B:t=4T C:t=0T ' | ;
Vis) : v(s)
P | PT

.))) v v '

a. Use fig. 2 to visualize the desired End End End

execution sequence for the time interval Fiqure 1: Executon o the tasks
0 =t <14T. Desired = without blocking due to priority inversion!

Task A running

Task B running

Task C running -

0 2 4 6 8 10 12 14 t/T

Figure 2: Desired execution sequence
Norwegian University of :
B NTNU ‘ Sciencgand Technolggy Operatmg SyStemS TE6

Whoops messed th|s up — wrong
r! /0 times & start tlmes of A and B!

6.3 Priority inversion

Priorities A=1 (highest), B=3, C=5 (lowest).
Tasks A and C use a shared resource:

Tasks are activated at
A:t=2T B:t=4T C:t=0T

b. Use fig. 3 to visualize the actual execution
sequence with the according tasks states of
the three tasks for the

time interval 0 <t < 14T.

Task A

Task B

Task C

TASK A
Prio 1

TASK B
Prio 2

T |
' ! !
P(.S) | P(S)
|
i 2T | 5T i 37
‘ l l
! v
V(S) l v(s)
T ! !
| - | | T
+ Acan finally ~ v
End acquire S End End
P_(S) inA b|OCkS, F|gupe 1: Execution of the tasks
since C holds S : V(S)

A starts due 3 b e ..
running - hig!’l#p(io?i.‘ ! ! ‘W_A finished
blocked s
ready . T

B starts due :
whnbigHer pdia 5
blocked : H B s finished, >~ | =
ready Ablocked | | = :
_ K 1 I I R I JPRReTE C finished
. =X Cryns pa 4
running 4* * __
blocked .
ready S S O | ———
S N R B R | 1 >
2 4 6 . 10 12 14 tT

°P(S)

Vis)
3: Actual execution sequence
)perating systems TEG

6.3 Priority inversion

Priorities A=1 (highest), B=3, C=5 (lowest).

TASK A
Prio 1

Tasks A and C use a shared resource:
Tasks are activated at

A:t=2T B:t=4T C:t=0T

b. Use fig. 3 to visualize the actual execution
sequence with the according tasks states of
the three tasks for the

time interval 0 <t < 14T.

Task A

Task B

Task C

P(S) in A blocks,
sincg C holds S

T
|
' T

P(S)

|
i 2T
!
v(s)
4

|
|
|
v
n

A can finally
End acquire S End

TASK B TASK C
Prio 2 Prio 3
T T
| T
I I
: v
| P(S)
! I
| 5T | 3T
! I
! I
! v
| V(S)
I : T
M v
End

Figuge 1: Execution of the tasks

running
blocked

.
o
.
.
.

i .| A finished
4

ready
A read

y, ha

runkighex
blocked

prio
P

tfinally

[«
d
®

:[back to C

ready

|~"' ¢ C finished

ready

K <% higher prio
gﬁ M7 C
blocked .

 Bs)

E‘;This is the correct version!

TN L LN U T Sdence and Technology

Figure 3: Actual execution sequence
Operating systems TE6

6.3 Priority inversion

TASK A TASK B TASK C
Prio 1 Prio 2 Prio 3
Priorities A=1 (highest), B=3, C=5 (lowest). T | T
Tasks A and C use a shared resource P(S) | PS)
i 2T | 5T i 3T
' l l
c. Assume there are additional tasks with Ve | Vi)
priorities between those of A and C which do . : T
not access the shared resource (no semaphores &« End End
used). These tasks’ individual priorities and Figure 1: Execution of the tasks

execution times are not known. How long would
the high priority task A be delayed in the worst case, then?

Additional tasks with priorities between A and C can delay the execution of task C
further => the absolute point in time at which C releases semaphore S is delayed

Accordingly, A could be delayed for an arbitrary amount of time

Norwegian University of .
B NTNU ‘ Sciencgand Technolggy Operatmg SyStemS TE6

