
Operating Systems
Compiler Construction

Discussion of PE1 – 05.02.2021

Michael Engel

Compilers & OS Discussion PE1 2

1.1 Recursion in C
• Write a simple C program (rec_sum.c) that calculates the

sum of the numbers 1 to n using a recursive function int
sum_n(int n). For example, a call to sum_n(5) should return
the value 15. After calling the function, print out its return
value like this:

• The sum of numbers from 1 to 5 is 15.

• Use printf(3) to create the output. Please refer to the C
crash course slides for details on printf.

Compilers & OS Discussion PE1 3

1.1 Recursion in C
#include <stdio.h>

int sum_n(int n) {
 if (n == 1) return n;
 return n + sum_n(n-1);
}

int main(void) {
 int n = 100000;
 printf("The sum of numbers from 1 to %d is %d.\n",
 n, sum_n(n));
}

$ gcc -o rec_sum rec_sum.c
$./rec_sum
The sum of numbers from 1 to 100000 is 705082704.

Compilers & OS Discussion PE1 4

1.1 Recursion in C
#include <stdio.h>

int sum_n(int n) {

 if (n == 1) return n;

 return n + sum_n(n-1);

}

int main(void) {

 int n = 1000000; // was 100000

 printf("The sum of numbers from 1
to %d is %d.\n",

 n, sum_n(n));

}

$ gcc -o rec_sum rec_sum.c
$./rec_sum
The sum of numbers from 1 to 100000 is 705082704.
Change n to 1000000 and recompile:
$ gcc -o rec_sum rec_sum.c
$./rec_sum
Segmentation fault: 11

a. Experiment with different (also
large) values for the parameter n.

Why does the program fail to run
correctly until its end beginning
with a certain value of n?

What is this value on your
computer?

Compilers & OS Discussion PE1 5

1.1 Recursion in C

• What happened here?
• Program runs correctly for n = 100.000
• "Segmentation fault: 11" for n = 1.000.000

• "A segmentation fault occurs when a program attempts to access a
memory location that it is not allowed to access, or attempts to access
a memory location in a way that is not allowed"
• So our program performs a non permitted memory access when n

is too large!

$ gcc -o rec_sum rec_sum.c
$./rec_sum
The sum of numbers from 1 to 100000 is 705082704.
Change n to 1000000 and recompile:
$ gcc -o rec_sum rec_sum.c
$./rec_sum
Segmentation fault: 11

Compilers & OS Discussion PE1 6

1.1 Recursion in C
• What happened here?

• the function sum_n calls itself
recursively n times

• Each recursive level stores local
variables on the stack

• "I don’t see any local variables in
sum_n?!?"

• The parameter n as well as additional
information (e.g. the return address) is
also stored on the stack ➛ at least 8
bytes per level!

• So, for a value of n =
• 100.000 ➛ 800.000 bytes
• 1000.000 ➛ 8000.000 bytes

• The stack size is limited to a certain size
in most Unix systems

int sum_n(int n) {
 if (n == 1) return n;
 return n + sum_n(n-1);
}

n (= 10)

return addr to main

n (= 9)

return addr to sum_n

n (= 8)

return addr to sum_n

n (= 7)

return addr to sum_n

n (= 6)

return addr to sum_n

:
:

top of
stack

grows
down
ward

sum_n(10)

sum_n(9)

sum_n(8)

sum_n(7)

sum_n(6)

sum_n(5)

Compilers & OS Discussion PE1 7

1.1 Recursion in C

• When does the program crash?
• Program runs correctly for n = 100.000
• Segmentation fault for n = 1.000.000

• Use a bisection approach (divide and concquer):
• try the average of the two values n = (n1+n2)/2
• if there is a correct result, recurse for interval [n,n2] else [n1,n]

• 550.000: segmentation fault ➛ try [100.000,550.000]: n = 325.000
• 325.000: segmentation fault ➛ try [100.000,325.000]: n = 212.500:
• 212.500: "The sum of numbers from 1 to 212500 is 1103394770."

$ gcc -o rec_sum rec_sum.c
$./rec_sum
The sum of numbers from 1 to 100000 is 705082704.
Change n to 1000000 and recompile:
$ gcc -o rec_sum rec_sum.c
$./rec_sum
Segmentation fault: 11

Compilers & OS Discussion PE1 8

1.1 Recursion in C
• 550.000: segmentation fault ➛ try [100.000,550.000]: n = 325.000
• 325.000: segmentation fault ➛ try [100.000,325.000]: n = 212.500
• 212.500: "The sum of numbers from 1 to 212500 is 1103394770."

➛ try [212.500,325.000]: n = 268750
• 268.750: segmentation fault ➛ try [212.500,268.750]: n = 240.625
• 240.625: "The sum of numbers from 1 to 240625 is -1114455447."

• Wait, a negative sum?
• This is an integer overflow
• Two’s complement 32 bit integers have a range of

–231 (-2,147,483,648) to +231-1 (+2,147,483,647)
• If the sum is > +231-1, bit 31 (the most significant bit, MSB) is set
➛ interpreted as negative number

Integer overflows are not caught in C (too much overhead!)
• So it’s a good question what actually constitutes a "correct result"

Compilers & OS Discussion PE1

• Typing and compiling is very tedious…
• Can we find the maximum value of n automatically?

• Idea 1: loop inside the C main function

9

1.1 Recursion in C
$ gcc -o rec_sum rec_sum.c
$./rec_sum
The sum of numbers from 1 to 100000 is 705082704.
Change n to 1000000 and recompile:
$ gcc -o rec_sum rec_sum.c
$./rec_sum
Segmentation fault: 11

int main(void) {

 int n1 = 100000, n2 = 1000000, n;

 while (1) {

 sum_n((n1+n2)/2);

 if (no_crash) n1 = (n1+n2)/2;

 else n2 = (n1+n2)/2;

 }

}

Unfortunately, the loop cannot
continue to run when the

program crashes…

We’ll see how to handle
situations like this when we

discuss signals in Unix!

Compilers & OS Discussion PE1

• Idea 2: loop in the shell that runs the bisection
• This approach would actually work (but would be slow)
• Here, you should try to pass the value for n on the command line

10

1.1 Recursion in C
$ gcc -o rec_sum rec_sum.c
$./rec_sum
The sum of numbers from 1 to 100000 is 705082704.
Change n to 1000000 and recompile:
$ gcc -o rec_sum rec_sum.c
$./rec_sum
Segmentation fault: 11

int main(int argc, char **argv) {
 // In real life, we should check for errors here
 int n = atoi(argv[1]);
 printf("The sum of numbers from 1 to %d is %d.\n",
 n, sum_n(n));
}

Compilers & OS Discussion PE1 11

1.1 Recursion in C
#include <stdio.h>
int a;
int b = 42;
char c[23];
int sum_n(int n) {
 static int d;
 int e;
 if (n == 1) return n;
 return n + sum_n(n-1);
}
int main(void) {
 double f;
 int n = 100000;
 printf("&a = %p\n", &a);
 printf("&b = %p\n", &b);
 // … and the others…
 printf("sum to %d is %d.\n",
 n, sum_n(n));
}

In addition, create a number of different
variables (different types, global, local,
initialized, uninitialized) in your program
and print their addresses in memory in
the main() function.

You can print addresses of variables
using printf(3) like this:

printf("Address of foo is %p\n", &foo);

Compilers & OS Discussion PE1 12

1.1 Recursion in C
#include <stdio.h>
int a;
int b = 42;
char c[23];
int sum_n(int n) {
 static int d;
 int e;
 if (n == 1) return n;
 return n + sum_n(n-1);
}
int main(void) {
 double f;
 int n = 100000;
 printf("&a = %p\n", &a);
 printf("&b = %p\n", &b);
 // … and the others…
 printf("sum to %d is %d.\n",
 n, sum_n(n));
}

Printing the address of some variables
in main doesn’t work:
printf("&d= %p\n", &d);
printf("&e= %p\n", &e);

$ gcc -o rec_sum rec_sum.c
rs1.c:20:24: error: use of undeclared identifier 'd'
 printf("&d = %p\n", &d);
 ^
rs1.c:21:24: error: use of undeclared identifier 'e'
 printf("&e = %p\n", &e);

Why?
• e is local in sum_n ➛ not visible in main
• d is static local in sum_n
➛ not visible in main

• but treated as global

Compilers & OS Discussion PE1 13

1.1 Recursion in C
$./rec_sum
&a = 0x55747dba9048
&b = 0x55747dba9010
&c = 0x55747dba9030
&f = 0x7ffd93e2d5f0
&n = 0x7ffd93e2d5ec

$ nm rec_sum
0000000000004048 B a
0000000000004010 D b
0000000000004030 B c
…
0000000000004024 b d.2319

We can print the addresses of all
visible variables inside of main

To print the addresses of d and e, you
would have to print them inside the
function sum_n!

The Unix nm tool can give you the
addresses of all global variables

In addition, it provides the address for the
static variable d, which was internally
given the unique name d.2319!

Why are the addresses different
between the output of nm and the

program output?

This is another security protection
mechanism called address space

layout randomization (ASLR)!

Compilers & OS Discussion PE1 14

1.1 Recursion in C
$ cat rec_sum.c
…

int main(void) {

 double f;

 int n = 100000;

…

$./rec_sum

&a = 0x55747dba9048

&b = 0x55747dba9010

&c = 0x55747dba9030

&f = 0x7ffd93e2d5f0

&n = 0x7ffd93e2d5ec

b. Which distance (in bytes) do the
addresses of two variables have that are
declared one after the other in main()?

Explain why the distance is the one you
see

Here, we first have f, then n on the stack:
&f = 0x7ffd93e2d5f0
&n = 0x7ffd93e2d5ec

(remember – the stack grows downwards
in memory!). So the distance of the two
variables in memory is:
0x7ffd93e2d5f0-0x7ffd93e2d5ec = 4

This is the size of the int variable n

Compilers & OS Discussion PE1 15

1.1 Recursion in C
$ cat rec_sum.c
…

int main(void) {

 double f;

 char g;

 int n = 100000;

 printf("&f = %p\n", &f);

 printf("&g = %p\n", &g);

 printf("&n = %p\n", &n);

$./rec_sum

&f = 0x7ffe1b48bfd0

&g = 0x7ffe1b48bfcb

&n = 0x7ffe1b48bfcc

b. Which distance (in bytes) do the
addresses of two variables have that are
declared one after the other in main()?

Let’s try to add a char variable g in
between f and n now!

Here, the compiler reordered the
variables that are on the stack now:

double f;

int n;

char g;

0x7ffe1b48bfd0

0x7ffe1b48bfd3

0x7ffe1b48bfcc

0x7ffe1b48bfcf

0x7ffe1b48bfcb

Depending on your compiler, its
settings (flags) and your OS, local

variables can be reordered.
In addition, variables using > 1

byte are usually naturally aligned
in memory

Compilers & OS Discussion PE1 16

1.1 Recursion in C
$./rec_sum

&a = 0x55747dba9048

&b = 0x55747dba9010

&c = 0x55747dba9030

&f = 0x7ffd93e2d5f0

&n = 0x7ffd93e2d5ec

c. Why is a global int variable located at
a completely different address?

Here, we meant "completely different
from the local variables". We’ll try to
improve the precision of our questions
in the future :-).

Local variables are located on the
stack, which grows downward from
"high" addresses (0x7fffffffffff here)

The data (and bss) segment for global
variables are located low in memory,
usually behind the text segment (here:
0x55xxxxxxxxxx)

On Linux, an executable program
is not loaded at virtual memory

address 0, but at a higher address

You can also print the addresses
of the functions main and sum_n
to see where they are located in

memory

Compilers & OS Discussion PE1 17

1.1 Recursion in C
$ cat rec_sum.c

…

int sum_n(int n) {

 int e;

 printf("&e = %p\n", &e);

 if (n == 1) return n;

 return n + sum_n(n-1);

}

$./rec_sum

&e = 0x7fff2c079ef4

&e = 0x7fff2c079ec4

&e = 0x7fff2c079e94

&e = 0x7fff2c079e64

&e = 0x7fff2c079e34

&e = 0x7fff2c079e04

&e = 0x7fff2c079dd4

&e = 0x7fff2c079da4

&e = 0x7fff2c079d74

&e = 0x7fff2c079d44

…

d. Why does the address of a local
variable in the recursive function
decrease the higher the level of
recursion is?

This question was probably a bit
redundant, but I wanted you to
experiment a bit more.

Since the stack where the local variable
is located (here: e) grows downwards, a
new stack frame is allocated below the
current in memory for each recursion.

Each recursion has its own copy of local
variables stored in the stack frame, so
the addresses of the local vars. decrease

Compilers & OS Discussion PE1 18

1.1 Recursion in C
$ cat rec_sum.c

…

int sum_n(int n) {

 double f;

 char g;

 int n = 100000;

…

$ cc -g -o rec_sum rec_sum.c

Question from the OS Q&A yesterday:
"Adding all the printfs should be
unnecessary – isn’t there a better way to
get at the addresses?"

Unfortunately, you cannot iterate over
local variables in C (no introspection), so
this can’t be done from within a program.
We could use a debugger such as gdb

$ gdb ./rec_sum

(gdb) b main

Breakpoint 1 at 0x11d2: file rs1.c, line 10.

(gdb) run

Starting program: /home/me/rs1

Breakpoint 1, main () at rs1.c:10

10 int main(void) {

(gdb) info locals
f = 0
g = 0 '\000'
n = 32767
(gdb)

Unfortunately, gdb doesn’t
provide an easy way to print the
addresses of local variables…

