

https://folk.ntnu.no/michaeng/tdt4186_21/michael.engel@ntnu.no

Theoretical exercises Spring 2021

Theoretical Exercises 4 Memory Management

Please submit solutions on Blackboard by Thursday, 11.03.2021 12:00h

4.1 Buddy algorithm (4 points)

A memory management system is allocated using the *Buddy algorithm* for a memory with a total size of 512 kB and a minimum block size of 64 kB.

The following tables each describe an initial scenario at time t=1 before an allocation (A) or a release (R) of a data block. For each of the memory blocks, the current allocation for t=1 is given – either an allocation a,b,c,... or the assignment of the given 64 kB blocks to a free memory area of given size.

At time t = 2, the given allocation or release is requested. For an allocation, the size of the memory block to allocate is given.

Enter the resulting memory layout at t = 2 in the table. If an allocation or release cannot be performed, indicate this in the respective table.

a. Scenario 1:

t	Operation	Block	Size	64 kB	64 kB	64 kB	64 kB						
1	1 Initial \rightarrow			128	kB	а	b	256 kB					
2	R	b	_										

b. Scenario 2:

t	Operation	Block	Size	64 kB							
1	In	itial $ ightarrow$					512	kB			
2	Α	х	121 kB								

c. Scenario 3:

t	Operation	Block	Size	64 kB									
1	1 Initial \rightarrow			128	kB	64 kB	у	a					
2	R	у	_										

d. Scenario 4:

t	Operation	Block	Size	64 kB	64 kB	64 kB					
1	1 Initial \rightarrow			128	kB	64 kB	а	b	b 64 kB		kB
2	Α	z	180 kB								

4.2 First fit algorithm (3 points)

Use the *first fit* strategy to implement the following sequence of memory requests. Note your results by completing the following table. Each field of the table stands for 1 MB of memory and there are 32 MB of memory available altogether:

- a. release A, (already shown)
- b. allocate 4 MB for F, (already shown)
- c. allocate 2 MB for A,
- d. release B,
- e. release E,
- f. allocate 7 MB for E,
- g. release E,
- h. allocate 4 MB for E

Initial layout	Α	Α	Α	В	В	В	С	С	С	С	С	С						D	D	D	D	D	Е	Е	Е	Е		
Release A				В	В	В	С	С	С	С	С	С						D	D	D	D	D	Е	Е	Е	Е		
Alloc. F (4 MB)				В	В	В	С	С	С	С	С	С	F	F	F	F		D	D	D	D	D	Е	Е	Е	Е		
Alloc. A (2 MB)																												
Release B																												
Release E																												
Alloc. E (7 MB)																												
Release E																												
Alloc. E (4 MB)																												

4.3 Page replacement (3 points)

Complete the given table using the *first-in first-out* (FIFO) approach. The age of each page frame is given as support information, you don't have to fill it in.

Allocation sequence $ ightarrow$	1	2	3	4	5	6	1	2	3	2
Page frame	1	1	1	1						
Page frame 2		2	2	2						
Page frame 3			3	3						
Page frame 4				4						
Age of page frame 1 (optional)	0	1	2	3						
Age of page frame 2 (optional)	>	0	1	2						
Age of page frame 3 (optional)	>	>	0	1						
Age of page frame 4 (optional)	>	>	>	0						