
Department of Computer Science – IDI TDT4186 Operating Systems

https://folk.ntnu.no/michaeng/tdt4186_21/
michael.engel@ntnu.no

Practical exercises
Spring 2021

Practical Exercises 5
Unix IPC

Please submit solutions on Blackboard by Thursday, 15.04.2021 12:00h

5.1 Pipeline performance

In this exercise, you are going to measure the bandwidth provided by Unix IPC methods.
In order to do this, write a benchmarking program. After creating a pipe, your program should split into two process:

• a child process that endlessly writes data blocks of the given size (the content of the data blocks is irrelevant)
using write(2) over the given IPC method as fast as possible and

• a parent process that reads the data blocks of the same size as fast as possible using read(2) over the same
IPC method.

Your program should accept a block size (number of bytes) of the data blocks to be sent from child to parent as its only
command line parameter.

a. Pipeline functionality (3 points)

Write the program using unnamed pipes (system call pipe(2)) and output the cumulative number of received
bytes after each read call of the parent process.

b. Performance (3 points)

Use the alarm(3) libc function to trigger a Unix signal handler for the SIGALRM signal once a second.

Implement the signal handler so that it prints the current pipeline bandwidth, i.e. the number of bytes received in
the previous second. See the signal(3) and alarm(3) man pages for details.

Test your program for different block sizes (powers of ten), so 1 byte, 10 bytes, 100 bytes, . . . up to the maximum
block size possible on your system.

Investigate the following questions:

• What is the largest block size supported on your system?

• What is the highest bandwidth you can achieve and at which block size is this bandwidth achieved?

• Does the bandwidth change when you start several instances of your program at the same time?

Hint 1: Setting up a signal handler requires you to pass a function pointer. If you are unsure how to use function
pointers, you can refer to the tutorial at https://www.cprogramming.com/tutorial/function-pointers.
html.

Hint 2: Comment out the print function that outputs the cumulative number of bytes from part a, otherwise the
throughput measured will be off, since the parent would not receive as fast as possible.

https://folk.ntnu.no/michaeng/tdt4186_21/
mailto:michael.engel@ntnu.no
https://www.cprogramming.com/tutorial/function-pointers.html
https://www.cprogramming.com/tutorial/function-pointers.html


Department of Computer Science – IDI TDT4186 Operating Systems

c. Trigger statistics printing (2 points)

Register and write an additional signal handler to handle the SIGUSR1 signal. You can trigger the signal by
executing kill -s USR1 pid in a shell, where pid is the process ID of the parent process of your benchmark
program. In response to receiving the signal, in the corresponding signal handler, your program should print the
cumulative number of bytes received over the pipe so far.

Your program should continue to run after printing the information.

d. Named pipes (2 points)

Create a variant of your program that uses named pipes (see the mkfifo man page) instead of unnamed pipes
and repeat the measurements from part b.

Hint: Open the named pipe (FIFO) file (using open(2) and specifying either O_RDONLY or O_WRONLY as appro-
priate) only after executing fork(2). If your program seems to hang when running it a second time, delete the
created FIFO file from the file system using the rm command in the shell or by calling the unlink(2) system
call in your program before calling mkfifo.


	Pipeline performance

