
Operating Systems
Discussion of PE3 – 4.03.2021

Michael Engel

Operating Systems – Discussion of PE3 2

Memory allocation
• Understanding how the heap is managed

• Malloc: allocate memory
• Free: deallocate memory

• K&R implementation (2nd edition, section 8.7)
• Free list

• Free block with header (pointer and size) and user data
• Aligning the header with the largest data type
• Circular linked list of free blocks

• Malloc
• Allocating memory in multiples of header size
• Finding the first element in the free list that is large enough
• Allocating more memory from the OS, if needed

• Free
• Putting a block back in the free list
• Coalescing with adjacent blocks, if any

Operating Systems – Discussion of PE3 3

Memory layout: Heap

char* string = "hello";
int iSize;

char* f(void)
{
 char* p;
 iSize = 8;
 p = malloc(iSize);
 return p;
}

text

data

bss

stack

heap

Operating Systems – Discussion of PE3 4

Using malloc and free
• Types

• void*: generic pointer to any type
(can be converted to other pointer types)

• size_t: unsigned integer type returned by sizeof()
• void *malloc(size_t size)

• Returns a pointer to space of size size
• ... or NULL if the request cannot be satisfied
• e.g., int* x = (int *) malloc(sizeof(int))

• void free(void *p)
• Deallocate the space pointed to by the pointer p
• Pointer p must be pointer to space previously allocated
• Do nothing if p is NULL

Operating Systems – Discussion of PE3 5

Example heap allocations

#include <stdlib.h>
void* malloc(size_t size);
void free(void *ptr);

…

char* p1 = malloc(3);
char* p2 = malloc(1);
char* p3 = malloc(4);
free(p2);
char* p4 = malloc(6);
free(p3);
char* p5 = malloc(2);
free(p1);
free(p4);
free(p5);

Heap

p1

Operating Systems – Discussion of PE3 6

Example heap allocations

#include <stdlib.h>
void* malloc(size_t size);
void free(void *ptr);

…

char* p1 = malloc(3);
char* p2 = malloc(1);
char* p3 = malloc(4);
free(p2);
char* p4 = malloc(6);
free(p3);
char* p5 = malloc(2);
free(p1);
free(p4);
free(p5);

Heap

p1

p2

Operating Systems – Discussion of PE3 7

Example heap allocations

#include <stdlib.h>
void* malloc(size_t size);
void free(void *ptr);

…

char* p1 = malloc(3);
char* p2 = malloc(1);
char* p3 = malloc(4);
free(p2);
char* p4 = malloc(6);
free(p3);
char* p5 = malloc(2);
free(p1);
free(p4);
free(p5);

Heap

p1

p2
p3

Operating Systems – Discussion of PE3 8

Example heap allocations

#include <stdlib.h>
void* malloc(size_t size);
void free(void *ptr);

…

char* p1 = malloc(3);
char* p2 = malloc(1);
char* p3 = malloc(4);
free(p2);
char* p4 = malloc(6);
free(p3);
char* p5 = malloc(2);
free(p1);
free(p4);
free(p5);

Heap

p1

p2
p3

Operating Systems – Discussion of PE3 9

Example heap allocations

#include <stdlib.h>
void* malloc(size_t size);
void free(void *ptr);

…

char* p1 = malloc(3);
char* p2 = malloc(1);
char* p3 = malloc(4);
free(p2);
char* p4 = malloc(6);
free(p3);
char* p5 = malloc(2);
free(p1);
free(p4);
free(p5);

Heap

p1

p2
p3

p4

Operating Systems – Discussion of PE3 10

Example heap allocations

#include <stdlib.h>
void* malloc(size_t size);
void free(void *ptr);

…

char* p1 = malloc(3);
char* p2 = malloc(1);
char* p3 = malloc(4);
free(p2);
char* p4 = malloc(6);
free(p3);
char* p5 = malloc(2);
free(p1);
free(p4);
free(p5);

Heap

p1

p2
p3

p4

Operating Systems – Discussion of PE3 11

Example heap allocations

#include <stdlib.h>
void* malloc(size_t size);
void free(void *ptr);

…

char* p1 = malloc(3);
char* p2 = malloc(1);
char* p3 = malloc(4);
free(p2);
char* p4 = malloc(6);
free(p3);
char* p5 = malloc(2);
free(p1);
free(p4);
free(p5);

Heap

p1

p5,p2
p3

p4

Operating Systems – Discussion of PE3 12

Example heap allocations

#include <stdlib.h>
void* malloc(size_t size);
void free(void *ptr);

…

char* p1 = malloc(3);
char* p2 = malloc(1);
char* p3 = malloc(4);
free(p2);
char* p4 = malloc(6);
free(p3);
char* p5 = malloc(2);
free(p1);
free(p4);
free(p5);

Heap

p1

p5,p2
p3

p4

Operating Systems – Discussion of PE3 13

Example heap allocations

#include <stdlib.h>
void* malloc(size_t size);
void free(void *ptr);

…

char* p1 = malloc(3);
char* p2 = malloc(1);
char* p3 = malloc(4);
free(p2);
char* p4 = malloc(6);
free(p3);
char* p5 = malloc(2);
free(p1);
free(p4);
free(p5);

Heap

p1

p5,p2
p3

p4

Operating Systems – Discussion of PE3 14

Example heap allocations

#include <stdlib.h>
void* malloc(size_t size);
void free(void *ptr);

…

char* p1 = malloc(3);
char* p2 = malloc(1);
char* p3 = malloc(4);
free(p2);
char* p4 = malloc(6);
free(p3);
char* p5 = malloc(2);
free(p1);
free(p4);
free(p5);

Heap

p1

p5,p2
p3

p4

Operating Systems – Discussion of PE3 15

How to use the heap, then?

#include <stdlib.h>
void* malloc(size_t size);
void free(void *ptr);

…
int * var;
char* p1 = malloc(3);
char* p2 = malloc(1);
var = malloc(4);

// little endian byte order!
*var = 0x12345678;

// we no longer need the value
free(var);

Heap

p1

p2
var

0x78
0x56
0x34
0x12

This example does not consider
our specific heap implementation

that stores meta data inside the heap!

C “crash course” 16

The biggest problem? Pointer Arithmetics
● We can “compute” using pointer and array identifiers:

● text[4] is another expression for *(text+4)
● text+1 can be written as &(text[1])
● even c[-1] is possible instead of *(c-1)!

char text[] = “quark”;
char *c = text+1;
c = 'w'; / “qwark” */
(text+4) = 'b'; / “qwarb” */
(c-1) = 'z'; / “zwarb” */

From the C crash course

(slide 54 ff.)…

C “crash course” 17

Pointer Arithmetics (2)
● This code outputs “quark” three times

char text[]=”quark”;

int i;
char *c;

for (i=0;i<7;i++) /* normal array access */
printf(“%c”,text[i]);

for (i=0;i<7;i++) /* using pointer arithmetics */
printf(“%c”,*(text+i));

 /* more pointer arithmetics */
for (c=text;c<=&text[6];c++)

printf(“%c”,*c); p: pointer, s: scalar value

p+s is equal to &(p[s])
*(p+s) is equal to p[s]

p++ is equal to p=&(p[1])

C “crash course” 18

Pointer Arithmetics (3)
● Also works for arrays which

are not of type char
● since p+s = &(p[s]), p is

not incremented by 1 (Byte),
but rather by 4!

→ Address difference
depends on the
pointer type!

short int dummy = 1;
char bla='A',blb='B';
int mult[4][3] = { {0,0,0},
 {0,1,2},
 {0,2,4},
 {0,3,6} };  
int *p = &mult[2][1];

int main() {
p++;
return 0;

}

0 0 0 0 1 2 0 2 4 0 3 6 0x080
497e411 AB

4 bytes 0x080
497e4

0x080
497e0
0x080
497e0

mult

p

Operating Systems – Discussion of PE3 19

Memory blocks: pointer, size, data
• Representation of blocks in memory

• pointer to the next block
• size of the block
• user data

size user data

p (address returned to the user)

Four our example
var = malloc(4);
*var = 0x12345678;

4 bytes
0x78, 0x56, 0x34, 0x12

Operating Systems – Discussion of PE3 20

Free block: memory alignment
• Define a structure s for the header

• Pointer to the next free block (ptr)
• Size of the block (size)

• To simplify memory alignment
• Make all memory blocks a multiple of the header size
• Ensure header is aligned with largest data type (e.g., long)

• Union: C technique for forcing memory alignment
• Variable that may hold objects of different types and sizes
• Made large enough to hold the largest data type, e.g.,

union Tag {
 int ival;
 float fval;
 char *sval;
} u;

Operating Systems – Discussion of PE3 21

Free block: memory alignment
/* align to long boundary */
typedef long Align;

union header { /* block header */
 struct {
 union header *ptr;
 unsigned size;
 } s;
 Align x; /* Force alignment */
};

typedef union header Header;

much more information about alignment and padding:
http://www.catb.org/esr/structure-packing/

In fact, "x"
is never used,
it’s just there
to enforce the
alignment of
struct s!

http://www.catb.org/esr/structure-packing/

Operating Systems – Discussion of PE3 22

Allocate memory in units
• Keep memory aligned

• Requested size is rounded up to multiple of header size
• Rounding up when asked for nbytes

• Header has size sizeof(Header)
• Round:(nbytes + sizeof(Header) – 1)/sizeof(Header)

• Allocate space for user data, plus the header itself

void *malloc(unsigned int nbytes) {
 unsigned int nunits;

 nunits = (nbytes + sizeof(Header) – 1) /
 sizeof(Header) + 1;
 …
}

Operating Systems – Discussion of PE3 23

Free List: Circular Linked List
• Free blocks, linked together

• Example: circular linked list
• Keep list in order of increasing addresses

• Makes it easier to coalesce adjacent free blocks

In
use

Free list

In
use

In
use

Operating Systems – Discussion of PE3 24

Allocation algorithms
• Handling a request for memory (e.g., malloc)

• Find a free block that satisfies the request
• Must have a “size” that is big enough, or bigger

• Which block to return?
• First-fit algorithm

• Keep a linked list of free blocks
• Search for the first one that is big enough

• Best-fit algorithm
• Keep a linked list of free blocks
• Search for the smallest one that is big enough
• Helps avoid fragmenting the free memory

Operating Systems – Discussion of PE3 25

3a. Memory management
• The file mymalloc.c contains a C program skeleton for a

heap allocator. To keep things a bit more simple, the heap
is implemented here as a simple array of bytes with 64 kB.

• In this exercise, you will implement your own heap memory
management functions void *mymalloc(int size) to
allocate a block of memory of the given size from the heap
and void myfree(void *p) to release the block of memory
pointed to by the pointer
parameter

• Example code:

void *p;
p = mymalloc(42);
if (p != (void *)0) {
 // do something
 myfree(p);
} else {
 printf("mymalloc failed!\n");
}

Operating Systems – Discussion of PE3 26

3a. Malloc: First-fit algorithm
• Start at the beginning of the list
• Sequence through the list

• Keep a pointer to the previous element
• Stop when reaching the first block that is big enough

• Patch up the list
• Return a block to the user

prev p

Operating Systems – Discussion of PE3 27

Case 1: a perfect fit
• Suppose the first fit is a perfect fit

• Remove the element from the list
• Link the previous element with the next element

prev->s.ptr = p->s.ptr;
• Return the current element to the user (skipping header)

return (void *)(p+1);

prev p p+1

Operating Systems – Discussion of PE3 28

Case 2: block is too big
• Suppose the block is bigger than requested

• Divide the free block into two blocks
• Keep first (now smaller) block in the free list

prev->s.size -= nunits;
• Allocate the second block to the user

p += p->s.size;
p->s.size = nunits;

p p

Operating Systems – Discussion of PE3 29

Combining the two cases
prevp = freep; /* start at the beginning */

for (p = prevp->s.ptr; /* */ ; prevp = p, p = p->s.ptr) {

 if (p->s.size >= nunits) {

 if (p->s.size == nunits) { /* fit */
 prevp->s.ptr = p->s.ptr;

 } else { /* too big, split in two */
 p->s.size -= nunits; /* #1 */
 p += p->s.size; /* #2 */
 p->s.size = nunits; /* #2 */
 }

 return (void *)(p+1);
 }
}

Operating Systems – Discussion of PE3 30

Start of the free list
• Benefit of making free list a circular list

• Any element in the list can be the beginning
• Don’t have to handle the “end” of the list as special
• Optimization: make head be where last block was found

prevp = freep; /* start at the beginning */

for (p = prevp->s.ptr; /* */ ; prevp = p, p = p->s.ptr) {

 if (p->s.size >= nunits) {

 /* Do stuff from the previous slide! */
 …
 freep = prevp; /* move the head! */
 return (void *)(p+1);
 }
}

Operating Systems – Discussion of PE3 31

No block is big enough!
• Cycling completely through the list

• Check if the “for” loop returns back to the head of the list

prevp = freep; /* start at the beginning */

for (p = prevp->s.ptr; /* */ ; prevp = p, p = p->s.ptr) {

 if (p->s.size >= nunits) {

 /* Do stuff from the previous slide! */
 …
 }
 if (p == freep) /* wrapped around! */
 Handle the error…
}

Operating Systems – Discussion of PE3 32

• In our example: fail, because we have a fixed memory area
• In general: ask the operating system for additional memory

• …and insert the new chunk into the free list
• …and then try again, this time successfully

• Operating system dependent
• on Unix: sbrk(2) system call

What to do when you run out

 if (p == freep) /* wrapped around! */
 if ((p = sbrk(nunits)) == NULL)
 return NULL; /* could not get more memory from */
 /* the operating system, so fail… */

Operating Systems – Discussion of PE3 33

3b. Free
• User passes a pointer to the memory block

• void free(void *ap);
• Free function inserts block into the list

• Identify the start of entry: bp = (Header *)ap – 1;
• Find the location in the free list
• Add to the list, coalescing entries, if needed

size user data

apbp

Operating Systems – Discussion of PE3

In
use

In
use

FREE
ME!

34

Scanning free list for the spot
• Start at the beginning: p = freep;
• Sequence through the list: p = p->s.ptr;
• Stop at last entry before the to-be-freed element

• (bp > p) && (bp < p->s.ptr);

Free list p bp

Operating Systems – Discussion of PE3

In
use

35

Corner cases: beginning or end
• Check for wrap-around in memory:

p >= p->s.ptr;
• See if to-be-freed element is located there:

(bp > p) || (bp < p->s.ptr)

Free list p bp

FREE
ME!

In
use

Operating Systems – Discussion of PE3 36

Inserting into free list
• New element to add to free list: bp
• Insert in between p and p->s.ptr:

• bp->s.ptr = p->s.ptr;
• p->s.ptr = bp;

p

bp

p->s.ptr

Operating Systems – Discussion of PE3

In
use lower upper

37

Coalescing with neighbors
• Scanning the list finds the location for inserting

• Pointer to to-be-freed element: bp
• Pointer to previous element in free list: p

• Coalescing into larger free blocks
• Check if contiguous to upper and lower neighbors

Free list p bp

FREE
ME!

In
use

Operating Systems – Discussion of PE3

lower upper

38

Coalescing with upper neighbor
• Check if next part of memory is in the free list:

• if (bp + bp->s.size == p->s.ptr)
• If so, make both into bigger block:

• Larger size: bp->s.size += p->s.ptr->s.size;
• Copy next pointer: bp->s.ptr = p->s.ptr->s.ptr;

• Else, simplify point to the next free element:
• bp->s.ptr = p->s.ptr;

p bp p->s.ptr

Operating Systems – Discussion of PE3

 lower upper

39

Coalescing with lower neighbor
• Check if previous part of memory is in the free list:

• if (p + p->s.size == bp)
• If so, make both into bigger block:

• Larger size: p->s.size += bp->s.size;
• Copy next pointer: p->s.ptr = bp->s.ptr;

p bp p->s.ptr

Operating Systems – Discussion of PE3 40

3c. Design and implement test cases
• The test cases should be implemented in the main function.

Describe which situations can occur and what you do to
check for the correct behavior of your memory allocator.

void* mymalloc(size_t size);
void myfree(void *ptr);
…
char* p1 = mymalloc(3);
char* p2 = mymalloc(1);
char* p3 = mymalloc(4);
myfree(p2);
char* p4 = mymalloc(6);
myfree(p3);
char* p5 = mymalloc(2);
myfree(p1);
myfree(p4);
myfree(p5);

Heap

p1

p2
p3

Operating Systems – Discussion of PE3 41

3c Design and implement test cases
• Test interesting corner cases:

• Allocate more memory than available
• Try to free a non-allocated block

• Special case: free a previously freed block
• Create allocation with only small gaps left using

alternating malloc and free calls, then try to allocate a
block that doesn’t fit

• Check coalescing with upper, lower or both neighbors
• Malloc the block at the start of the free list
• …more ideas?

Operating Systems – Discussion of PE3 42

Conclusions
• Elegant simplicity of K&R malloc and free

• Simple header with pointer and size in each free block
• Simple linked list of free blocks
• Relatively small amount of code (~25 lines each)

• Limitations of K&R functions in terms of efficiency
• Malloc requires scanning the free list

• To find the first free block that is big enough
• Free requires scanning the free list

• To find the location to insert the to-be-freed block
• Testing

• Complete test coverage is not that simple…

