

System and Runtime Software Interaction with Modern Hardware

Fordypningsemne / theory module TDT09
Meeting November 2nd, 2021
Høst 2021
Michael Engel

Motivation

- The idea:
 - Understand the evolution of the Unix system over the last decades
- This evolution led to current OS features that can be investigates as well as possible future features
 - Each of this features is illustrated by a relevant paper introducing the new idea/feature.
- Your task:
 - understand the ideas behind the respective paper for one of the given topics
 - develop an idea of how the implementation of the respective feature into a relatively simple Unix-like system (xv6) could take place
 - figure out which changes to the system the implementation of the feature requires

The Basis

- the <u>xv6 educational OS from MIT</u>.
- xv6 exists in a number of versions feel free to choose one:
 - An older version for x86 PCs
 - Documentation about xv6 for x86
 - The currently supported version for RISC-V
 - Documentation about xv6 for RISC-V
 - An inofficial port to the Raspberry Pi 1/Zero (ARM32)
 - An inofficial port to the Raspberry Pi 2 (ARM32)
- Running xv6:
 - x86 and RISC-V: <u>qemu</u> emulator (configurations qemu-systemi386 and qemu-system-riscv64)
 - x86 and ARM32 also on real hardware: PC and Raspi 1/2
 - RISC-V on real hardware: Allwinner Nezha D1 board

Deliverables

- 1. A paper (about 10-15 pages) as PDF file
 - describing the feature from your topic and the results of your investigation of a possible implementation in xv6
 - ideally including a description of your implementation approach
- 2. A presentation video (about 15-20 minutes)
 - including your presentation slides as a PDF file

Presentation

- I would love to have a live session with your presentations
 - ...and demonstrations in case you want to show code
 - and we could order pizza :-)
- Problems:
 - 29.11.-3.12. NIKT conference/workshop/PhD defense
 - 5.12.-11.12. RISC-V Summit in San Francisco...
- Would it be possible to have a meeting in the week of December 13th?
 - This would probably be a whole day, so we would need to find a room
 - ...and watch the Corona situation as usual...

Topic distribution

- As expected, some topics were more popular than others
 - I hope everyone's still happy with the assigned topic
 - If not, let me know and we'll try to find an alternative
 - 1. **New approaches to system calls**Tor Andre Haugdahl
 - 2. **Tickless scheduling**Jenny Manne
 - 3. **Single address-space OS**Sveinung Øverland
 - 4. **Capabilities**Petter Bjørseth
 - Redundant multithreading Hans Erik Frøyland
 - 6. Memory error handling
 - 7. Lazy Process Switching Markus Rekdal

- 8. **Slim Binaries**Håvard Ramberg
- 9. **Log-structured File Systems** Iver Håkonsen
- 10. **Tracing**Jonathan Andrew Scott Nilsen
- 11. **Checkpointing and Migration**Philip Gausaker
- 12. **Processes as Files**Anders Hallem Iversen
- 13. **Virtualization**Ole Sivert Aarhaug
- 14. **Kernel Optimization/Synthesis**Petter Berven

References

1. Writing papers:

Roy Levin and David D. Redell: "How (and How Not) to Write a Good Systems Paper" https://www.usenix.org/legacy/publications/library/proceedings/dsl97/good_paper.html

2. Preparing presentations:

Andreas Zeller: "How to give a good research talk" (see also his Twitter account @AndreasZeller) https://www.st.cs.uni-saarland.de/edu/specmine11/slides-good-talk-howto.pdf

3. The state of OS research:

Rob Pike's talk "System software research is irrelevant":

http://herpolhode.com/rob/utah2000.pdf

Timothy Roscoe's Usenix ATC/OSDI2021 keynote "It's Time for Operating Systems to Rediscover Hardware":

https://www.youtube.com/watch?v=36myc8wQhLo

4. xv6 for RISC-V (+ qemu/compiler setup):

Web: https://pdos.csail.mit.edu/6.828/2021/xv6.html

Book: https://github.com/mit-pdos/xv6-riscv-book

Code: https://github.com/mit-pdos/xv6-riscv

- 5. RISC-V documentation the RISC-V reader: https://github.com/Lingrui98/RISC-V-book
- 6. Nezha D1 technical information: https://linux-sunxi.org/Allwinner Nezha

