The Process File System and Process
Model in UNIX System V

Roger Faulkner — Sun Microsystems
Ron Gomes — AT&T Bell Laboratories

ABSTRACT

We describe the process file system /proc in UNIX System V Release 4 and its
relationship to the UNIX process model abstraction. /proc began as a debugger interface
superseding ptrace(2) but has evolved into a general interface to the process model. It
provides detailed process information and control mechanisms that are independent of
operating system implementation details and portable to a large class of real architectures.
Control is thorough. Processes can be stopped and started on demand and can be instructed
to stop on events of interest: specific machine faults, specific signals, and entry to or exit
from specific system calls. Complete encapsulation of a process’s execution environment is
possible, as well as non-intrusive inspection. Breakpoint debugging is relieved from the
ambiguities of signals. Security provisions are complete and non-destructive.

The addition of multi-threading to the process model motivates a proposal for a
substantial change to the /proc interface that would replace the single-level flat structure with
a hierarchy of directories containing status and control files. This restructuring would
eliminate all ioct!(2) operations in favor of read(2) and write(2) operations, which generalize

more easily to networks.

Introduction

The process file system represents all processes
in the system as files in a directory conventionally
named /proc. This concept was first introduced by
Tom Killian in the research Eighth Edition UNIX
system [1]. In System V Release 4 (SVR4) the con-
cept has been refined from a simple replacement for
the ptrace(2) system call into a general interface to
the UNIX process model abstraction.

A typical ““‘Is -1 /proc’’ is shown in Figure 1.
The name of each entry is a decimal number
corresponding to the process id. The owner and
group of the file are the process’s real user-id and
group-id, but permission to open the file is more res-
trictive than traditional file system permissions. The
reported ‘‘size’’ is the total virtual memory size of
the process; system processes such as process 0 and
process 2 have no user-level address space, so their
sizes are zero.

Standard system call interfaces are used to
access [proc files: open(2), close(2), Iseek(2),
read(2), write(2), and ioctl(2). Data may be
transferred from or to any valid locations in the
process’s address space by applying Iseek to position
the file at the virtual address of interest followed by
read or write.

A process file contains data only at file offsets
that match valid virtual addresses in the process. I/O
operations with a file offset in an unmapped area
fail. /O operations that extend into unmapped areas
do not fail but are truncated at the boundary. This
includes writes as well as reads.

Information and control operations are provided
through ioctl. A few of the ioctl operations are:

PIOCSTATUS  Get process status.

PIOCSTOP Direct process to stop and ...
PIOCWSTOP  Wait for process to stop.
PIOCRUN Make stopped process runnable.

—rWem—— 1 root root
Y We—————— 1 root root
B o L p—— 1 root root
W ————— 1l rrg staff
B 1 weath staff
I Wem—————— 1 raf staff

0 Oct 31 10:06 00000
208896 Oct 31 10:06 00001
0 Oct 31 10:06 00002

131072 Oct 31 10:06 00206
749568 Oct 31 10:06 00370
651264 Oct 31 10:06 00393

Figure 1: A sample /proc directory
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PIOCSTRACE Define set of traced signals.
PIOCSFAULT  Define set of traced machine faults.
PIOCSENTRY  Define set of traced syscall entries.

PIOCSEXIT Define set of traced syscall exits.

PIOCGREG Get values of process registers.
PIOCSREG Set values of process registers.
PIOCMAP Get virtual address mappings.

This list is not exhaustive. Some of these
operations are explained in more detail and addi-
tional ones are introduced in the following sections.
Others are omitted entirely for brevity. The SVR4
proc(4) manual page provides complete details.

Process Address Space

SVR4 incorporates a new Virtual Memory (VM)
architecture (derived from SunOS) that provides
processes much greater control over the structure and
content of address spaces [2, 3]. A process executes
in a virtual address space consisting of a number of
memory mappings (contiguous virtual address
ranges). Associated with each mapping are a virtual
address, a length, and a set of flags describing per-
missions (read, write, execute) and other attributes.!
The traditional notions of text, data, and stack do not
appear explicitly in this model but are subsumed by
more general notions.

New system calls permit a process to map
objects (generally files) into and out of its address
space (mmap(2), munmap(2)) or to change the pro-
tections on a mapping (mprotect(2)). A mapping can
be  private (MAP_PRIVATE) or shared
(MAP_SHARED). Modifications to a shared map-
ping are reflected through to the mapped object and
appear in the address space of all other processes
with a shared mapping to that object. Modifications
to a private mapping affect only the address space of
the process making the change and are invisible out-
side that address space.

The fact that a mapping is “‘private’’ does not
mean that the implementation prohibits memory-
sharing among processes that are mapping the same
object. In fact, private mappings are implemented
so as to provide copy-on-write semantics. Multiple
private mappings to an object share the same
memory pages until a process attempts to modify
such a shared page, at which time the page is copied
and the copy replaces the original in the address
space.

IThe granularity of a mapping is a system-specific page
size, typically a small multiple of 1024 bytes. There is
more to the VM architecture than is presented here. For
example, individual pages can be mapped with different
permissions and to different underlying objects.
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Within this model a ‘‘text’” segment is nothing
more than a private executable mapping to the code
portion of an executable file, ie. an a.out. A
‘‘data’ segment is a readable and writable private
mapping to that portion of an a.out containing ini-
tialized data. A ‘‘stack’ segment is a read/write
mapping into which the stack pointer points, but is
otherwise undistinguished (and in fact a sophisti-
cated application can have multiple stacks). The
system provides suitably-behaving anonymous
objects to which mappings may be applied in the
construction of other segments (e.g. ‘‘bss’’, unini-
tialized zero-filled memory). Shared libraries are
implemented by mapping the code and data of a
shared library executable file into the address space
of a process.

The PIOCMAP operation extracts the memory
map of a process. Figure 2 shows a typical memory
map, obtained by a simple tool that reports the con-
tents of the map structures returned by PIOCMAP.
The list contains a number of writable mappings
(presumably data) and a number of mappings that
are read-only and executable (presumably code),
from both the a.out itself and a shared library that
has been mapped.?

80000000 26K read/exec

80008000 6K read/write/exec
80009800 74K read/write/exec/break
c0020000 4K read/write/exec/stack
C1000000 148K read/exec

C1026000 4K read/write/exec
C1027000 2K read/write/exec
C1028000 2K read/write

Figure 2: A Typical Memory Map

What may not be apparent from this list is that
all the mappings are private (this is generally the
case unless processes explicitly arrange to communi-
cate with one another through a shared mapping). In
particular the code portions are MAP_PRIVATE
mappings with read and execute permissions. What
happens if an attempt is made to store into a code
portion? The process itself can’t do this directly
(reasonably so) because it doesn’t have write permis-
sion on the mapping, but a controlling process can
write the address space through the /proc interface.
In this case the system will permit the write, and
copy-on-write semantics will be provided where
necessary. In this way breakpoints can be planted in

?Note that “‘stack’ and “‘break”’ mappings appear in the
list despite all the disclaimers. The operating system is
prepared to grow one mapping (the initial program stack
segment) automatically and another (the break segment)
on explicit request by the brk(2) system call. A process-
control application can sometimes make use of this
information so it is provided in the PIOCMAP interface.
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code, or data modified, without corrupting either the
a.out file being executed or the address space of
other processes that may be executing the same
code.

Process Context

The execution context of a process (at least the
portion deemed relevant) is described by the
prstatus_t structure, which a controlling process can
request at any time. Elements of this structure
describe signal state, the contents of processor regis-
ters, process and session ids, and scheduling state
(running or stopped, with more detailed information
about stopped processes). The structure is returned
by the PIOCSTATUS request or as an optional side-
effect of the process-stop requests PIOCSTOP and
PIOCWSTOP; it is designed to contain the informa-
tion most frequently needed by a controlling process
such as a debugger. Other data structures and opera-
tions exist for details of process state that are less
frequently used, such as the contents of the floating-
point registers, the information needed by ps(1), and
the signal actions for every signal. Process state can
be modified in controlled ways; for many of the
operations that ‘‘get’” state information there is a
corresponding ‘‘set’” operation. Thus, for example,
the floating-point registers are fetched into a struc-
ture of type fpregset_t by the PIOCGFPREG request
and are modified by the PIOCSFPREG request.

An important difference between this style of
interface and that provided by the research prototype
is the presentation of a complete and consistent pro-
cess model as independent as possible of internal
system implementation details. Formerly it was
necessary to examine and directly manipulate the
user and proc structures of the target process in
order to effect state changes; this tied a process-
control program to details that could (and did)
change between releases of the system and was a
functional improvement over ptrace only to the
extent that it provided greater bandwidth and the
ability to control unrelated processes. A primary
goal was to remove these dependencies from the
interface; secondary goals were to ease debugger
development, improve portability of applications,
and reduce the number of system calls routinely
made by a debugger.? This has an associated cost in
that there are more operations and data types for the
programmer to master, but the cost is small in com-
parison with the resultant improvements in capabil-
ity, consistency, portability, and efficiency.

3The goal of debugger efficiency, though irrelevant in
many situations, becomes important in the implementation
of features such as conditional breakpoints, for which
‘“‘breakpoints per second’ is a realistic measure of
performance.
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Events of Interest

A process executes in an environment esta-
blished by and enforced by the UNIX kernel.
Natural points of control for a process are where it
enters and leaves the kernel, specifically, system call
entry and exit, machine faults, and receipt of signals.

Events of interest are specified through the
/proc interface using sets of flags. Signals are
specified using the POSIX signal set type, sigset_t.
Machine faults and system calls are specified using
analogous set types fitset_t and sysset_t. Like sig-
nals, faults and system calls are enumerated from 1;
there is no fault number 0 or system call number 0.4
The SVR4 implementation provides for up to 128
signals, 128 faults and 512 system calls.

A traced process stops when it encounters an
event of interest or when it is directed to stop, nor-
mally because the controlling process issued a
PIOCSTOP request. It may also stop for reasons
external to /proc; the competing mechanisms for
stoppin§ a process are ptrace and job-control stop
signals.” (The /proc stop directive is independent of
signals.) Ignoring the competing mechanisms, points
in the kernel at which a process may stop are illus-
trated in Figure 3.

A stop on system call entry occurs before the
system has fetched the system call arguments from
the process. A stop on system call exit occurs after
the system has stored all return values in the traced
process’s data and saved registers. This gives a
debugger the opportunity to change the system call
arguments before processing occurs and to manufac-
ture whatever return values it wishes the process to
see. In addition, a process that is stopped on system
call entry can be directed to abort execution of the
system call and go directly to system call exit. This
combination of facilities enables complete encapsu-
lation of the system call execution environment of a
process so that, for example, older system calls or
alternate versions of them can be simulated entirely
at user level. (This is one way in which obsolete
facilities could be supported ‘‘forever’’ without
cluttering up the operating system.)

Stopping on machine faults and on system call
entry and exit is straightforward; the process simply
enters the kernel and stops. Stopping on receipt of a
signal is more involved.

There are basically two points in the kernel
where signals are detected: when the process is
returning to user level and when the process is sleep-
ing at an interruptible priority within a system call.

4System call number O exists in some UNIX system
implementations as the ‘indirect’’ system call, but this
only provides an alternate method for passing the real
system call number.

Jptrace is made obsolete by /proc but is still required by
the System V Interface Definition.
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The kernel function issig() handles both cases.

Just before a process returns to user level, it
checks for the presence of a signal to be acted upon
and then acts on it by executing:

if (issig() )
psig();

If there are non-held and non-ignored signals pend-
ing for the process, issig() promotes one of them
from pending to current and returns true. If the
action for the signal is SIG_DFL, psig() terminates
the process, possibly with a core dump. Otherwise,
psig() modifies the saved registers and the user-level
stack so that the process will enter the signal handler
for the current signal when execution is resumed at
user level. Job-control stop signals are treated dif-
ferently; the default action for these signals is taken
within issig().

Within an interruptible sleep, issig() is called
to determine if the system call should be terminated
with EINTR. If so, the process returns to syscall(),
perhaps stopping on syscall exit along the way, to
ask the question again. Since there is already a
current signal, another signal is not promoted by the
second call to issig().6

issig() handles all cases of stopping the process
due to receipt of a signal as well as the case of stop-
ping the process due to the presence of a /proc stop
directive. This includes stopping the process by the
competing mechanisms. The complete logic of
issig() is illustrated in Figure 4.

syscall()

\
sysentry
QOP

sleep()
if (issig())

error = EINTR;
~ \(’/
[/ sysexit

|

if (issig())
psig();

Faulkner, Gomes

A process may stop twice due to receipt of a
job-control stop signal, first on a signalled stop if the
signal is being traced and again on a job-control stop
if the process is set running without clearing the sig-
nal. A job-control stop is not an event of interest to
/proc. Such a stopped process can be restarted only
by sending it a SIGCONT signal. However the pro-
cess can be directed to stop via /proc so that, when
restarted by SIGCONT, it stops again on a requested
stop before exiting issig(). /proc gets the last word.

A similar situation holds for ptrace. When
controlled via ptrace, a process stops on receipt of
any signal, whether or not that signal is included in
the set of signals traced via /proc. If the signal is
traced via /proc, the process must be set running
through /proc before it can be manipulated by
ptrace. Even though the process is logically set run-
ning, it remains stopped on the signalled stop and
cannot be set running again through /proc; ptrace
has control. After ptrace sets the process running, it
will stop again on requested stop before exiting
issig() if it was directed to stop through /proc.

60lder UNIX systems did not use the current signal
concept and consequently suffered a race condition in
which the signal detected by issig() might not be the
signal actually delivered to the process by psig(). This
caused a variety of problems, including a possible panic of
the operating system if psig() attempted to deliver an
ignored signal. For debuggers the consequence was that
all signals except perhaps one had to be cleared on
restarting a process after a stop, not just the signal that
caused the stop.

trap()

faulted
stop

issig()
I if (issig())
V psig();

requested \

stop

signalled \
stop

Figure 3: Events of Interest
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/proc gets the first and last words.

Sending SIGCONT to a stopped process sets it
running only if it is in a job-control stop; neither
ptrace nor [proc can restart a job-control stopped
process. All three mechanisms peacefully coexist by
virtue of the delicate balance maintained in issig(),
with cooperation from setrun().”

An important consequence of having all
signal-related stopping confined to issig() is that a
signal received while asleep in an interruptible sys-
tem call need not cause premature exit from the sys-
tem call when the process is set running again. (The
current signal can be cleared by the debugger. It is
automatically cleared on a job-control stop; the
SIGCONT signal that restarts the process will be dis-
carded unless it is being caught.) Since the reason
for sleeping may have gone away, sleep() must
return normally to its caller when a stopped process
is restarted without a current signal. Non-
interruption of sleeping system calls relies on all
callers of sleep() to test the reason for sleeping and

7The ptrace and job-control stop mechanisms have
always been in conflict. Job-control stops used to be
disabled when a process was controlled by ptrace.

issig()

!

requested

The Process File System and Process Model...

to call again if the condition is still true, typically:
while ( condition )
sleep(...);
This is a fine point and a fruitful source of kernel
bugs.

Because a requested stop is performed in
issig(), a process can be directed to stop while it is
sleeping and set running again without disturbing the
system call. The process can also be directed to
abort the system call without having to send it a sig-
nal.

Breakpoints

The /proc interface does not directly implement
the concept of a process breakpoint, but it provides
sufficient mechanism for a debugger to do so.
Breakpoints can be installed in a process by a
debugger using the read and write operations on the
process address space to replace the machine instruc-
tion at each breakpoint address with an illegal user-
level instruction. Most systems designate one
instruction as the approved ‘‘breakpoint’’ instruction,

8UNIX systems used to arrange for signalled stops to
occur within psig(), thereby forcing EINTR failures of
interruptible system calls.

stop

. yes
cursig

ignore

promote a non-held
pending signal
to current signal

. no
cursig »>———= return FALSE;

signalled
stop

discard
cursig

?

return TRUE;

return TRUE;

Figure 4: Process Control in issig()
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but all that is really needed is one that causes a trap
to the kerncl. On architectures with variable-length
instructions, the length of the breakpoint instruction
should be that of the shortest instruction in the
instruction set (to avoid overwriting the instruction
following the breakpoint). The execution of the
breakpoint instruction should leave the program
counter with a known value relative to the break-
point address in all cases, preferably the breakpoint
address itself.

When the controlled process executes a break-
point instruction, it takes a machine fault, FLTBPT if
the instruction is the approved breakpoint instruction,
otherwise FLTILL or FLTPRIV for a general illegal or
privileged instruction. The process will stop on a
faulted stop if the debugger has specified the particu-
lar fault as an event of interest. Otherwise the pro-
cess is sent a signal, normally SIGTRAP or SIGILL.
If the signal is not being held (blocked) by the pro-
cess, the process will stop on a signalled stop if the
debugger has specified receipt of the particular sig-
nal as an event of interest. The essential difference
between stop-on-fault and stop-on-signal is the
phrase, ‘‘if the signal is not being held.”’

A signal does not cause a process to stop when
it is generated, only when it is received by the pro-
cess. Also, any signal can be sent to a process by
another process (subject to permissions). Lastly,
there can be more than one signal pending for a pro-
cess at one time. Signals are too overloaded in
semantics and mechanism to be used reliably for
breakpoint debugging. Machine faults are not used
for inter-process communication and cannot be inter-
cepted or held by a process; stop-on-fault is the pre-
ferred method for fielding breakpoints.

Controlling Multiple Processes

When a controlled process creates a child pro-
cess, the controlling process may wish to add the
new process to its set of controlled processes or it
may wish to let the new process run unmolested. In
either case some action must be taken.

To take control of new processes, a debugger
can set the inherit-on-fork flag in the original pro-
cess and arrange to trace exit from the fork(2) and
vfork(2) system calls. When the controlled process
forks, the child inherits all of the parent’s tracing
flags and both parent and child stop on exit from the
fork. The debugger sees the parent’s stop on exit
from fork and uses the return value (the pid of the
child) to open the child’s /proc file. Because the
child stopped before executing any user-level code,
the debugger can maintain complete control.

To allow new processes to run unmolested, the
debugger can simply reset the inherit-on-fork flag so
that new processes start with all tracing flags
cleared. However, if breakpoints have been set any
new process will inherit them and possibly
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malfunction. In this case the debugger must arrange
for the controlled process to stop on entry to as well
as exit from fork and vfork. When the controlled
process stops on entry to fork, the debugger lifts all
the breakpoints and sets the process running. The
child starts running with no tracing flags and no
breakpoints. The parent stops on exit from fork and
the debugger can replant all the breakpoints. Special
care must be taken with vfork because the address
space is shared between parent and child until the
child exits or execs. /proc provides sufficient
mechanism to deal with this case efficiently.

Miscellaneous

Tracing flags can remain active for a process
when its process file is closed, allowing a process to
be left hanging and later reattached by a debugger.
This behavior is changed by setting the run-on-last-
close flag. When this flag is set and the last writ-
able /proc file descriptor for the process is closed,
all of the tracing flags are cleared and, if the process
is stopped, it is set running. This can be used by a
controlling process to ensure that its controlled
processes are released even if it itself is killed with
SIGKILL.

Given a virtual address in the controlled pro-
cess, the PIOCOPENM operation returns a read-only
file descriptor for the underlying mapped object, if
any. This enables a debugger to find executable file
symbol tables, including those for shared libraries
attached to the process, without having to know
pathnames.

The PIOCCRED and PIOCGROUPS operations
return complete credentials information for the con-
trolled process.

Finally, the PIOCGETPR and PIOCGETU
operations return, respectively, the proc structure and
user area for the controlled process. These opera-
tions are provided for completeness but their use is
deprecated because a program making use of them is
tied to a particular version of the operating system.
Their very existence reveals details of system imple-
mentation and their continuation into the new world
of multi-threaded processes is doubtful.

A number of things that might be useful to
know about a process are not provided through the
/proc interface, such as its file creation mask. Our
approach has been to provide information and con-
trol operations for the most common things that a
debugger needs, and for things that a process cannot
discover or do to itself through system calls. For the
remainder, a debugger can force a process to execute
system calls on the debugger’s behalf without the
process’s knowledge or consent.

It is worth noting that the SVR4 implementation
of /proc works correctly with Remote File Sharing
(RFS) [4]. With appropriate permission it is possible
to inspect, modify and control processes running on
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any machine in an RFS network. This extension of
capability “‘for free’’ to any machine in the network
applies to any resource that is accessible within the
file system npame space and is an additional
justification for implementing resources this way.?

Integrity and Security

The interface distinguishes operations that
modify process state or behavior (such as a request
to write the registers) from those that merely inspect
process state (such as a request for process status).
The former are regarded as ‘‘read/write’’ operations
and the latter as ‘‘read-only.”” A /proc file can be
opened for exclusive read/write use (if O_EXCL is
specified in the open(2)); in this way a controlling
process can avoid collisions with other controlling
processes. Read-only opens are unaffected in this
case.

All /O and control operations are guaranteed to
be atomic with respect to the traced process. Copy-
on-write is performed by the system excepting only
bona-fide shared memory; writing to one process
will not corrupt another process executing the same
executable file or shared library. This applies in
general to MAP_PRIVATE VM mappings.

Permission to open a /proc file requires that
both the uid and gid of the traced process match
those of the controlling process; setuid and setgid
processes can be opened only by the super-user.
When a traced process execs a setuid or setgid exe-
cutable file, the set-id operation is honored but the
file descriptor held by the controlling process
becomes invalid; no further operation on that file
descriptor will succeed except close(2), thus enforc-
ing security without modifying process behavior.?
When the set-id exec occurs, the traced process is
directed to stop and its run-on-last-close flag is set.
A controlling process with appropriate privilege can
reopen the named /proc file to retain control of the
target; just closing the invalid file descriptor clears
all tracing flags and sets the set-id process running.

Implementation

The implementation of /proc as a set of
‘“files” is facilitated by the Virtual File System
(VFS) architecture of SVR4 which is derived from the
vnode feature [5] of SunOS and ‘subsumes the File
System Switch (FSS) of earlier releases of System V.
VFS permits the coexistence on a single system of
several disparate file system types (fstypes) by pro-
viding a clean separation of file system code into
generic (file system-independent) and specific (file

9Needless to say, a debugger that takes advantage of this
facility must be prepared to deal with all of the problems
inherent in heterogencous networks.
is differs from the more intrusive behavior with
ptrace, in which set-id flags are ignored if the target
performs an exec(2).
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system-dependent) pieces with a well-defined but
narrow interface between the pieces. (Generic code
is viewed as ‘‘upper-level’” and specific code as
“‘lower-level.”’) Typically the set of fstypes on a
system will include conventional disk file systems
and network file systems as well as more outlandish
things such as /proc. In general any resource can be
made to appear within the file system name space if
it makes sense to view it that way.

The fundamental data structure manipulated by
generic code is the vnode (virtual node), which is the
system’s internal representation of a file and pro-
vides the handle by which file manipulations are per-
formed. A vnode contains both public and private
data. The public data in a vnode consists of infor-
mation that is maintained by the upper level or that
does not change over the life of the file (such as the
file type); private data is opaque to the upper level
and is implementation-specific (such as a list of
block addresses for a disk file).

The upper level requests the creation of vnodes
by the lower level, and these vnodes are subse-
quently supplied as operands to other file operations.
The set of vnode operations includes open, close,
read, write, ioctl, lookup, create, remove, and many
more. The developer of a file system type provides
the code that implements the necessary set of vnode
operations for that type.

Within this framework the construction of the
fantasy world (the illusion that processes are actually
files) is straightforward. System call references to
/proc files result in the invocation of lower-level
code to create and maintain /proc vnodes. For
example, an attempt to open /proc/2846 results in a
call to prlookup which searches the system process
structures for process id 2846 and (if such a process
exists) constructs a vnode for it. The upper-level
code associates this vnode with the open file descrip-
tor, and subsequent applications of read(2), write(2),
and ioctl(2) result in calls to prread, prwrite, and
prioctl to perform the requested process /O or con-
trol operation. Similarly, a command like /s(1) that
wants to read the contents of the /proc directory will
apply readdir(3) to it; this results in a call to prread-
dir which examines the system process structures
and satisfies the system call by constructing a set of
directory entries naming all the processes in the sys-
tem.

The intimate connection with process control
requires some code in addition to the usual VFS
plumbing; in this respect /proc is an unconventional
file system and not an ‘‘add-on.’” Most of this code
deals with the interaction between signals and pro-
cess stopping and appears in issig() (discussed above
in more detail). Minor changes were made in a few
other places including the system-call handler (to
stop the process on system call entry or exit), the
user trap handler (to stop the process when it incurs
a machine fault), the scheduler (to suspend a process
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undergoing /proc 1/0), exec(2) (to invalidate /proc
file descriptors to set-id programs), and exif(2) (to
inform /proc of the death of a process).

Implementation of /proc 1/0 requires that one
process be granted access to the address space of
another. This was a troublesome problem in the ori-
ginal research prototype because the memory
management code of the underlying system made it
difficult for one process to incur a page fault on
behalf of another. The new Virtual Memory archi-
tecture simplifies this problem. VM provides a
model of memory management in which machine-
dependent details are isolated in a separate layer.

In particular, each process has an associated
address space (‘‘as’’) data structure to which a set
of standard operations may be applied. One such
operation is as_fault, which performs page-fault pro-
cessing for a specified range of addresses. Given
this operation, all that is necessary for inter-process
1/0 is for the controlling process to apply as_fault to
the address space of the target process, map the tar-
get pages into its own address space, and copy the
data between the two addresses.

Overall, a high degree of portability was
achicved in the implementation of /proc. The VM
abstraction hides many of the details of memory
management. Machine-specific /proc VFS code is
confined to a single source file containing less than
10% of the total /proc-related code. Assuming a
complete implementation of the VM primitives and
of the generic porting base, porting should require
only the specification of a few details such as the
code for fetching register contents. (There is a
presumption here that the process model accommo-
dates all ‘“interesting’’ machines.)

Applications

The SVR4 ps(1) command is implemented using
/proc. Special provision was made for it in the
interface; the PIOCPSINFO operation returns every-
thing that ps might want to display about a process.
The logic of ps is to read the /proc directory, open
each process file in turn, issue the PIOCPSINFO
request, close the file, and print the result if
appropriate according to the ps options. Because ps
runs with super-user privilege and the process files
are opened read-only, the opens always succeed and
no interference is created for controlling and con-
trolled processes. Because all the information for a
process is obtained in a single operation, each line of
ps output is a true snapshot of the process, even
though the complete listing is not a true snapshot of
the whole system.

The interception of system calls with /proc is
at the heart of truss(1), a command that traces the
execution of a process, producing a symbolic report
of the system calls it executes, the faults it
encounters and the signals it receives. fruss can be
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applied to running processes or used to start up com-
mands to be traced, and will optionally follow the
execution of child processes as well. Because it
requires no symbol information and is applicable at
any time to an arbitrary process (even init), it can
often be used to find out what a misbehaving pro-
gram is really doing even if source is unavailable
and the executable file symbol information has been
stripped. fruss output can be startling.

truss is constrained by the security provisions
of /proc, so that it can be applied only to ordinary
(non-set-id) processes owned by the user. Moreover
if the traced process execs a set-id program (russ
loses control; the process continues normally, with
correct credentials, but no longer under control of
truss. If truss is run by the super-user, all permis-
sions are granted and any process and all its children
can be traced. fruss will not alter the behavior of a
process other than by slowing it down. (Of course,
just slowing it down can affect behavior if the pro-
cess uses alarm(2) or other real-time mechanisms.)

The interface is clearly intended to facilitate a
sopliisticated debugger and has already supported the
development of several prototypes. Such a debugger
is planned for a future release of the system. In the
meantime the use of ptrace is being phased out; the
standard debuggers sdb(1) and dbx(1l) have been
rewritten in SVR4 to use /proc (and, for sdb, to add
a few new capabilities, such as the ability to grab
and debug an existing process).

Proposed Extensions

A number of new facilities have been proposed
for inclusion in future releases of the system. We
describe a few of them here (though note that there
is no promise that any of these will actually be pro-
vided anytime soon).

By appropriately defining what it means for a
/proc file to be ‘‘ready’’ it would be possible to per-
mit /proc file descriptors to be used with the poll(2)
system call. This would make it much easier for a
debugger to wait for any one of a set of controlled
processes to stop on an event of interest while also
waiting for events such as keyboard input from the
user. It would offer more flexibility for multi-
process debugger implementations than the current
method of waiting for only a single process to stop;
this flexibility will be even more important when
there can be multiple threads of control within a sin-
gle process.

/proc currently gives short shrift to perfor-
mance aspects of the process model. A resource
usage interface has been proposed, along with an
interface to a process’s page data whereby a perfor-
mance monitor can sample page-level referenced and
modified information for a process on intervals at
will.
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A generalized data watchpoint facility has been
proposed and designed, based on the VM system’s
ability to re-map read/write permissions on indivi-
dual pages of a process’s address space. It can be
implemented on any architecture capable of running
SVR4 and can take advantage of specialized
hardware when available. The interface accepts
specification of watched areas of any size, down to a
single byte. The traced process stops only when a
watchpoint really fires; the system takes care of the
details of recovering
from machine faults taken due to references to
unwatched data that happens to fall in the same page
as watched data.

It is possible, with the addition of a small but
ugly wart on the /proc interface, to eliminate ptrace
from the operating system and implement it as a
library function built on /proc. The difficult part is
not with ptrace itself, but rather with the require-
ment that a process stop via ptrace be reported to
the parent via wait(2).

The current implementation does not permit a
debugger to directly map the address space of the
traced process via mmap(2); access is possible only
through explicit read or write system calls. Permit-
ting mmap would provide no new capability per se
but would allow very high-speed inspection or
modification of the target’s address space. Such a
facility is under consideration.

Proposed Restructuring

The evolution of the operating system toward a
process model incorporating shared address spaces
and multiple threads of control places some strain
upon the interface in its current form. A new struc-
ture is under consideration that would change the
/proc file system from a flat structure to a hierarchi-
cal one containing a number of sub-directories and
additional status and control files. The programming
interface changes from one in which ioctl(2) opera-
tions are applied to open file descriptors in order to
effect process control and interrogate process state to
one in which process state is interrogated by read(2)
operations applied to appropriate read-only status
files and process control is effected by structured
messages written to write-only control files. (A
structure similar in concept but different in detail
appears in Plan 9 [6].)

The change in model has a number of advan-
tages independent of multi-threading considerations.
Removing the dependence on ioct! simplifies the
implementation of /proc in a network environment.
The unstructured nature of ioctl operations and the
variability of operand sizes and /O directions make
it difficult to cleanly separate the client/server
interactions; read and write don’t share these prob-
lems. In addition the use of a control file to which
structured messages are written makes it possible to
combine several control operations in a single write
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system call; this can improve the performance of
some applications for which the number of system
calls is a bottleneck.

Of more relevance for the process model is that
a directory hierarchy is a natural structure in which
to present the relationship between a process and the
individual threads-of-control that share its address
space. Thread-ids of sibling threads appear as sub-
directories within a hierarchy that has the process-id
at the top.

Outstanding Issues and Future Work

/proc completes a long-incomplete process-
model/debugger interface. Unfortunately, a process
model interface built into the kernel can of necessity
deal only with kemnel interfaces. The Application
Binary Interface (ABI) was introduced in SVR4. The
ABI is not a kernel interface but a user-level shared
library interface, with the shared library being pro-
vided by the purveyor of the system.

With the advent of the ABI, programming inter-
faces move from the kernel level to the shared
library level. This is especially true for multi-
threaded applications in an environment in which
user-level threads may be multiplexed onto a smaller
set of kernel threads. A debugger that deals with the
user-level threads model must have access points in
the threads library of the same power as the system
call interfaces that /proc provides for kermel-level
threads. A generalized shared library interface con-
trol mechanism would benefit debugging of applica-
tions in general.

As always, debugging lags development.
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