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Abstract
This paper describes our experience with the implemen-

tation and applications of the Unix checkpointing library
libckp, and identifies two concepts that have proven to
be the key to making checkpointing a powerful tool. First,
including all persistent state, i.e., user files, as part of the
process state that can be checkpointed and recovered pro-
vides a truly transparent and consistent rollback. Second,
excluding part of the persistent state from the process state
allows user programs to process future inputs from a de-
sirable state, which leads to interesting new applications of
checkpointing. We use real-life examples to demonstrate
the use of libckp for bypassing premature software exits,
for fast initialization and for memory rejuvenation.

1 Introduction

Checkpointing and recovery is a technique for saving
process state during normal execution and restoring the
saved state after a failure to reduce the amount of lost work.
Since it is often not possible to checkpoint everything that
can affect the program behavior, it is essential to identify
what is included in a checkpoint in order to guarantee a suc-
cessful recovery. Figure 1(a) shows the three components
which together determine the program behavior. Volatile
state consists of the program stack and the static and dy-
namic data segments2. Persistent state includes all the
user files that are related to the current program execution.
OS environment refers to the resources that the user pro-
cesses must access through the operating systems, such as
swap space, file systems, communication channels, key-
board, monitors, process id assignments, time, etc. In this
paper, we use the term process state to refer to everything
that is included in a checkpoint, and the term process en-
vironment to refer to everything that is not included in a
checkpoint but can affect program behavior. In other words,

1The authors are with AT&T Bell Laboratories, 600 Mountain
Avenue, Murray Hill, NJ 07974. Contact author: Yi-Min Wang
(ymwang@research.att.com).

2Volatile state also includes those operating system kernel structures
that are essential to current program execution, for example, the program
counter, stack pointer, open file descriptors, signal masks and handlers.

while the process state is restored to the checkpointed state
at the time of recovery, process environment is not. Clearly,
volatile state should be part of the process state and OS en-
vironment should be part of the process environment. The
focus of this paper is on the following issue: “should the
persistent state belong to the process state or the process
environment?” Based on our experience, the answer is
application-dependent, and the flexibility of making such a
decision on a per-application basis can often lead to inter-
esting new applications of checkpointing.

To our knowledge, existing Unix checkpoint libraries
handle only active files, i.e., opened and not yet closed,
at the time when a checkpoint is taken [1, 2]. Therefore,
only part of the persistent state is included in the process
state, as shown in Figure 1(a). Moreover, what part of
the persistent state is checkpointed depends on when the
checkpoint is taken. We will give examples in Section 3
to demonstrate that the above approach may lead to in-
consistent recovery. Since the persistent state is often an
important part of most long-running applications, we have
developed a technique to include all persistent state in the
process state, as indicated in Figure 1(b), to guarantee truly
consistent checkpointing and transparent recovery3. The
key concept behind this technique is that checkpointing a
single-process application can no longer be achieved with
a single snapshot, and lazy checkpoint coordination [4] can
be used to make globally consistent checkpointing feasible.

Figure 1 (b) also implies that when a program fails and
restarts from a checkpoint, it can have a different behavior
if the OS environment is different. This observation sug-
gests a new approach to software fault tolerance: the en-
vironment diversity approach executes the same (failed)
program in a different environment so that the program
can follow a different execution path and bypass the origi-
nal software bugs that caused the failure. Section 4 gives
examples to illustrate how transient software failures can
be recovered by automatic environment diversity, and how
permanent software failures can also be recovered by intro-

3Strom et al. described a disk checkpoint manager for checkpointing
disk files in a self-recovering distributed operating system [3]. In contrast,
our approach has focused on developing application-level techniques that
can be incorporated into existing standard Unix applications.
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ducing environment diversity,for example, through process
migration [5].

When a checkpoint includes all volatile state and persis-
tent state, the recovered process is expected to perform ba-
sically the same functions as was the failed process (except
for the possibly different execution for bypassing software
bugs). In other applications where checkpointing is used as
a mechanism for saving intermediate process state, it may
be desirable to explicitly exclude certain part of the persis-
tent state from the process state, as shown in Figure 1(c), so
that the saved intermediate state can also be used as a start-
ing point for executing new tasks. Usually, an application-
specific saving routine needs to be written which can be a
time-consuming and error-prone task. We give an example
in Section 5 to show how our checkpointing library can be
easily incorporated into an existing application to provide
such a facility by excluding the input data files from the
process state.

In Section 6 we introduce the technique of memory reju-
venation based on the process state structure shown in Fig-
ure 1(d). In a long-running application, undesirable state
related to memory management may gradually build up ei-
ther because some allocated memory is not properly deal-
located after its usage or because of the limitation and/or
the weakness of the memory management algorithm. This
kind of virtual memory aging process can gradually de-
grade system performance and eventually cause software
failures. Memory rejuvenation is an on-line preventive roll-
back technique which checkpoints the memory of a process
at a “clean” state and periodically rolls back the process to
that state (from a point where all useful state has been saved
as persistent state) in order to prevent software failures.

In the next section, we first give a brief description
of the Unix checkpointing library libckp, and the over-
head measurement for a set of long-running benchmark
programs including commercial, industrial and research
applications.

2 Libckp: A Checkpoint Library for Unix

Libckp is a library for checkpointing Unix processes.
It saves and restores the data segments of user applications
as well as dynamic shared libraries, stack segment and
pointer, program counter, file descriptors, signal masks and
handlers, etc. Compared with other existing Unix check-
point libraries [1, 2], libckp has the following unique
features which we have found crucial for making check-
pointing and recovery an attractive tool to the users.

1. The library includes user files as part of the process
state that is checkpointed and recovered. More specif-
ically, when a process rolls back, all the modifications
it has made to the files since the checkpoint are un-
done so that the states of the files are consistent with
the volatile state.

2. For users who prefer transparent checkpoints, no
changes to the source code or recompilation are nec-
essary. Only object files are needed to link with the
library to obtain the executables. This feature is es-
sential when obtaining the source code is much more
difficult than obtaining the object code, and is very de-
sirable when recompilation takes a long time or may
require special compilation environments to be suc-
cessful. It also provides a uniform treatment for ap-
plications written in different programming languages
such as C, C++ and Fortran.

3. For users who prefer inserted checkpoints, two basic
function calls chkpnt() and rollback(i) are
available. The function chkpnt() returns 0 when
a checkpoint has been successfully saved. The func-
tion rollback(i) rolls back the process to a pre-
vious checkpoint, and the execution will return from
chkpnt()with a return value i. These two function
calls can be considered as a generalization of the two
Unix system calls setjmp() and longjmp() to
include the restoration of global variables and persis-
tent state. They together provide powerful execution
controls for many interesting applications.



4. To maximize the portability, we use a feature extrac-
tion tool IFFE (IF Features Exist) [6] at compilation
time to determine which part of the code to activate,
and a dynamic probing technique at run time to deter-
mine the boundaries of the stack and data segments.

Table 1 shows the overhead measurement for 14 long-
running programs including CAD applications, simulation
programs and signal processing applications. TimberWolf
[7] is a complete timing-driven placement and global rout-
ing package applicable to row-based and building-block
design styles. Vdrop [8] is a maximum voltage drop ver-
ification package. (The simulated annealing part of the
package was used in the experiments.) ACCORD (Au-
tomatic Checking and CORrection of Design errors) [9]
is a tool to verify a logic circuit implementation and cor-
rect logic design errors by formal methods. Galant [10]
is a delay-area optimization package for ASIC design us-
ing a standard-cell library approach. Simulated anneal-
ing was used to implement the optimizer. CADsyn is a
commercial CAD synthesis program. TILOS [11] is a
commercial transistor sizing package for minimizing the
sum of transistor sizes in synchronous CMOS circuits ac-
cording to performance specifications. (The input circuit
used for the experiment is a 15,498-transistor subcircuit
of a commercial microprocessor.) DBsim is a program
for simulating database creation, traversal and reorganiza-
tion. Qsim is a simulation program for fixed-rate encoding
of a second-order Gauss Markov source using an adap-
tive buffer-instrumented entropy-constrained trellis-coded
quantizer. SPRUN is a simulation environment for exper-
iments with real-time digital signal processing algorithms.
Csim is a simulation program for coded channel in wireless
communications. LPC2TD is a speech processing pro-
gram for efficient coding of LPC (Linear Predictive Cod-
ing) parameters by temporal decomposition. HERest is
a model training program for speech recognition. VFSM
(Virtual Finite State Machine) [12] validator is a program
that exhaustively generates possible execution sequences
of a network of communicating processes, checking for er-
rors in process interaction such as deadlock, livelock and
unexpected inputs. (The example used in the experiment
consisted of three VFSMs representing a protocol for sig-
nalling the digits of a telephone number over an interoffice
trunk line.) Winxe mimics natural input speech through so-
phisticated models of speech production (i.e., for the glottis
and for the vocal tract).

The size of the source code ranges from a few thousand
to a hundred thousand lines of code; the execution time
ranges from 2 to 17 hours; the checkpoint size ranges from
0.3 to 40 megabytes. The checkpoints are either sent to a
remote file server or stored on a local disk, depending on
the file system configuration of each organization. Local

checkpoints can be taken with a much lower overhead and
do not generate network traffic, but the checkpoints may
not be available when the local machine needs rebooting
or repair. The checkpoint interval is 30 minutes which
is the default value in libckp. The result shows that
checkpoint overhead is in general less than 7% for most
applications. The only exception is the DBsim program
which has the largest checkpoint size of 40 megabytes and
checkpoint overhead of 11%. By directly transmitting the
checkpoint data to the file server through Unix commu-
nication primitives in order to bypass the slow NFS, the
checkpoint overhead can be reduced to 4.3%.

3 Checkpointing Persistent State

Existing Unix checkpointing libraries either do not sup-
port the rollback of user files or only provide the capability
to a limited extent. Unlike the incorrect recovery of volatile
state which usually cause obvious process failures, incor-
rect rollback of persistent state often leads to undetectable
corrupted files and therefore has become the primary con-
cern of many users. We have found that supporting file
rollbacks is important in practice since most serious ap-
plications involve file operations, and requiring users to
understand and deal with the limitations on file rollbacks
often challenges the claim of transparency and ease of use.
A straightforward but incomplete way of extending volatile
state checkpointing to include persistent states is to record
the file size and file pointer of each active file at the time of
checkpoint. When a rollback is initiated, each of those files
is truncated to the recorded size and its pointer is seeked
to the recorded position. Figure 2 gives an example for
which the above simple approach will result in an incon-
sistency between the volatile state and the persistent state.
In Figure 2, the size of fileapp is not recorded in the
checkpoint because it is not active at chkpnt(). As a
result, fileapp is not truncated when a rollback occurs
and so the character “4” will be incorrectly appended twice.
Such an erroneous scenario can also exist if chkpnt() in
Figure 2 is omitted, and the rollback is done by restart-
ing the program from the very beginning. This shows that
persistent state checkpointing is important even for non-
long-running applications, and therefore has an even wider
application than volatile state checkpointing.

A naive way to avoid the above incorrectness is to check-
point all the user files when chkpnt() is called, but that
would be prohibitively expensive. Even if the user can
supply the information as to which files are involved in the
current program execution, the checkpoint overhead may
still be unacceptably high if the number of files is large or
the files themselves are large. Our approach is to model the



Table 1: Checkpoint overhead measurement for long-running applications (checkpoint interval = 30 minutes).

Program name TimberWolf Vdrop ACCORD Galant CADsyn

Language C C C C C
Code size (lines) 100K 11K 6K 1.2K 14K
Machine type Sparc 5 Sparc 1 Sparc server Sparc 5 Sparc 1
OS type SunOS 4.1.3 SunOS 4.1.1 SunOS 4.1.2 SunOS 4.1.3 SunOS 4.1.1
Execution time 8h 56m 12h 8m 2h 13m 7h 49m 2h 54m
Checkpoint size 9.1M 7.4M 33M 1.7M 3.1M
Checkpoint type remote remote remote remote remote
Overhead (time) 22m 55s 20m 6s 9m 8s � 0 � 0
Overhead (%) 4.3% 2.8% 6.8% � 0% � 0%

Program name TILOS DBsim Qsim SPRUN Csim

Language C C++ C C C
Code size (lines) 9.9K 13K 1.4K 19K 1.1K
Machine type Sparc 5 Sparc 2 Sgi Indy Sgi Indy Sgi Indy
OS type SunOS 4.1.3 SunOS 4.1.1 IRIX 5.2 IRIX 5.2 IRIX 5.2
Execution time 9h 39m 17h 7m 6h 50m 5h 48m 7h 1m
Checkpoint size 5.1M 40M 11M 1.2M 0.3M
Checkpoint type remote remote / non-NFS remote local local
Overhead (time) 29m 1h 53m / 44m 25m � 0 � 0
Overhead (%) 5.0% 11.0% / 4.3% 6.1% � 0% � 0%

Program name LPC2TD HERest VFSM Winxe

Language C C C Fortran
Code size (lines) 4K 12K 3K 30K
Machine type Sgi Indy Sgi Indy Sparc 1 Sgi Challenge
OS type IRIX 5.2 IRIX 5.2 SunOS 4.1.1 IRIX 5.2
Execution time 5h 45m 7h 4m 4h 53m 6h
Checkpoint size 0.3M 2.8M 17M 9M
Checkpoint type local local remote remote
Overhead (time) 5m � 0 9m 17m
Overhead (%) 1.45% � 0% 3.07% 4.7%



/*  fileapp contains three integers 1, 2 and 3  */
chkpnt();

fprintf(fp, "%d", 4);
fclose(fp);
/*  failure occurs, roll back  */
unlink("fileapp");  /*  remove the file */

fp = fopen("fileapp", "a");  /*  for append */

Figure 2: Example illustrating the need of correct rollback
of persistent state.

volatile state and the persistent state as a multiple-process
system, the file operations as inter-process communications,
and the consistency problem as a checkpoint coordination
[13, 14] problem. By means of dependency tracking for
file operations, we use lazy checkpoint coordination [4] to
make checkpointing persistent state feasible.

The basic concept of lazy coordination is that check-
points for coordination purpose need not be taken at the
time of checkpoint initiation by the initiating process; they
can be delayed until the state inconsistency due to mes-
sage dependency is about to occur. By considering each
user file as a separate process and the main process as the
checkpoint initiator, lazy coordination translates into the
following: user files that are not active at the time of check-
point do not have to be checkpointed when chkpnt() is
invoked; it suffices to record the size of a file when the
file becomes active and to make a shadow copy of the file
when the portion that existed at chkpnt() is about to be
modified. For the example shown in Figure 2, the size of
fileapp is recorded (on disk) at fopen() so that at the
time of rollback fileapp can be truncated to the correct
size to undo the effect of fprintf(). In another case,
suppose the failure does not occur; then a shadow copy of
fileappwill be generated at unlink(). If a failure oc-
curs later on, the shadow copy and the recorded size can be
used to restore fileapp to have both correct contents and
correct size. A natural optimization to further reduce both
run-time and space overhead is to perform the shadowing
on a page-by-page basis [3].

4 Bypassing Premature Software Exits

Design diversity [15, 16] and data diversity [17] are
two well-known approaches to software fault tolerance. In
order to recover from a software failure, the design diver-
sity approach executes a different program (implementing
the same function) on the same set of data, and the data
diversity approach executes the same program on a dif-
ferent (but equivalent) set of data. Figure 1(b) suggests a
third approach which we call the environment diversity

approach. By restarting from a checkpoint that includes
the entire volatile and persistent state, the same program
running with the same set of data can still have different
behavior if the OS environment is different. Therefore, the
diversity in the OS environment provides an opportunity
to bypass the software bugs that caused the failure. In this
paper, we focus on the virtual memory environment which
is part of the OS environment, and use real-life examples
to demonstrate how environment diversity can bypass pre-
mature software exits.

Figure 3 shows a program segment that is commonly
found in Unix applications which allocate dynamic mem-
ory through the malloc() function call. When a program
fails to allocate any more memory, this segment is invoked
to print out an error message and cause the software to exit
prematurely. For long-running applications, this kind of
premature software exits can be as undesirable as software
failures because a lot of useful work can be wasted. We will
show that the out-of-memory condition is in fact due to a
problem in the virtual memory environment, and the result-
ing software exit can be bypassed when the environmental
problem disappears by itself or is explicitly eliminated.

If  ((ptr = malloc(size)) == NULL) {
       print malloc error message;
       exit;
}
Use ptr;

Figure 3: Memory allocation failure.

Although the virtual address space of one process is
supposed to be independent of that of any other process
running on the same machine, processes do have to share
the same swap space and, as a result, can potentially in-
terfere with each other through memory allocation. More
specifically, one process may run out of memory because
other processes have exhausted the remaining swap space.
The following experiment was conducted to illustrate the
point. We started three programs: TimberWolf, Vdrop and
CADsyn on the same machine at the same time. After 30
minutes, a malicious program was submitted to the same
machine to constantly allocate more memory. The intent
was to exhaust the swap space so that when any of the three
programs requests any more memory, it would be forced to
exit because of a memory allocation failure. The result is:
CADsyn exited after 55 minutes; Vdrop exited after 3 hours
and 30 minutes; only TimberWolf was able to finish the en-
tire execution after 33 hours because it has a built-in mem-
ory management module which allocates all the required
memory at the very beginning. The experiment suggests
that, for applications requiring dynamic memory allocation



and running on heavily loaded machines where swap space
contention can be serious, checkpointing is highly valuable
for preventing a total loss of useful work due to the out-of-
memory problem. More specifically, if the two programs
that exited had taken periodic checkpoints, then they could
be restarted from their checkpoints and successfully finish
their executions on the same machine after the malicious
program was killed.

One primary difference between a premature software
exit and a software failure is that, in the former, the program
is still under control at the point just before it exits. This ob-
servation motivates our proposal of the program construct
shown in Figure 4 for protecting applications against en-
vironmental problems. The program segment operates as
follows. When malloc() function call fails, it retries for
MAX RETRY COUNT times with each retry separated from
the next one byRETRY WAIT PERIOD seconds. If the en-
vironmental problem is transient and any of the retries suc-
ceeds, the program can proceed; otherwise, a checkpoint is
taken just before the program exits. (Note that chkpnt()
returns 0 when it succeeds and return a negative values
when it fails.) When the program is later restarted, the
execution returns from chkpnt() with a default return
value 1. The program then tries the memory allocation
again and may succeed if the contention for swap space
no longer exists. Compared with periodic checkpointing,
the program structure shown in Figure 4 has two important
advantages: first, since the program will continue from
where it exited, no useful work is lost (except for the time
for taking the checkpoint and restoring the state); second,
when used alone, it does not incur run-time overhead dur-
ing failure-free execution and yet provides the protection
when the program needs it.

retry_count = 0;
while ((ptr = malloc(size)) == NULL) {
           retry_count = retry_count + 1;
           if (retry_count == MAX_RETRY_COUNT) {
               if (chkpnt() <= 0) {
                   print malloc error message;
                   exit;
                } else retry_count = 0;   /*  recovery */
            }
            sleep(RETRY_WAIT_PERIOD);
}
Use ptr;

Figure 4: Program construct for tolerating transient and per-
manent environmental problems such as the out-of-memory
conditions.

The out-of-memory condition can be permanent when
the machine simply does not have enough swap space to
satisfy the memory requirement of an application. In other
words, the environmental problem may not disappear au-

tomatically and some actions have to be taken to explicitly
force environment diversity in order to bypass the prema-
ture exit. Figure 5 shows an example of using process
migration for such a purpose. Program faultsim is a fast
and accurate diagnosis fault simulator for digital circuits,
consisting of approximately 7,000 lines of C++ code. The
program was first submitted to a Sparc 1 with 32 megabytes
of swap space. It ran out of memory after 2 hours and 50
minutes, took a checkpoint before it exited and was then mi-
grated to a Sparc 2 with 80 megabytes of swap space. After
another 27 minutes, it ran out of memory again and was mi-
grated to a Sparc server with 140 megabytes of swap space,
on which it ran for another 1 hour and 13 minutes and even-
tually finished the execution and produced correct results.
The above technique is particularly useful for applications
with unpredictable memory requirements which, for exam-
ple, depend on the input cases. If a long-running program
can usually finish its execution on a desk-top workstation
but can potentially run out of memory in some cases, it is
often submitted to a server machine with a large amount of
memory in order to minimize the risk of premature exits.
This can unnecessarily increase the demands on the more
expensive CPU cycles of the server machines while leaving
the desk-top workstations idle. By using the technique in
Figure 4, such a program can always be started on a work-
station and then migrated to a server only when it runs out
of memory. This can effectively reduce the expenses for
computing resources in an organization where the server
machines are always heavily loaded.
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5 Bypassing Long Initialization

Many long-running applications have a program struc-
ture similar to Figure 6(a). The input which deter-
mines the type of processing the current execution is sup-



posed to perform is obtained through Read Input(). A
long initialization routine is invoked to construct the ini-
tial volatile state as the basis for processing. The routine
Processing() operates on the init state accord-
ing to input and generates a new state, part of which
will be written out as the main result. For example, in
a speech processing program which evaluates techniques
for verifying recognition hypotheses, input corresponds
to the choice of a particular technique; Long Init()
reads in the hypotheses and the associated likelihoods from
a 150-megabyte remote database; Processing() pro-
duces the list of hypotheses which should be rejected. As
another example, in a database simulator, input con-
tains the simulation parameters and the names of the
trace files; Long Init() creates a database in mem-
ory according to the first trace file consisting of creation
events; Processing() performs traversal or reorgani-
zation simulations on the volatile database based on the
other trace files containing simulation events.

input = Read_Input();
init_state = Long_Init();
new_state = Processing(input, init_state);
Write_Result(new_state);

(a)

input = Read_Input();
init_state = Long_Init();
exclude_input_files_from_chkpnt();
chkpnt();
input = Read_Input();
new_state = Processing(input, init_state);
Write_Result(new_state);

(b)

Figure 6: (a) Original program structure; (b) bypassing
long initialization through checkpointing and restoration.

Very often, the init state can be reused by many
different executions with different input. It would be
more efficient if init state can be saved and then re-
stored for use in future executions to avoid repeating the
same time-consuming initialization. Usually, this is done
in an application-specific way by identifying and saving
only essential volatile state, which can be difficult to im-
plement and error-prone. An alternative is to checkpoint
the entire state by invoking chkpnt(), as shown in Fig-
ure 6(b), in order to guarantee correctness and consistency.
The input files, which are part of the persistent state, are
excluded from the checkpoint to allow new input files to
be processed. For some applications, Read Input()
has to be invoked again after chkpnt() so that, when
init state is restored and the execution returns from
chkpnt(), new parameters can be read in to overwrite the

checkpointed old parameters. This feature has been used
in a database simulator to save 40% of the total execution
time.

6 Memory Rejuvenation

Ordinary trees need selective pruning to make them
grow better; overgrown and untidy old shrubs need rejuve-
nation, a drastic “take it to the ground” pruning technique
[18]. Similarly, normal program executions need careful re-
source management to maintain performance; long-running
applications with accumulated undesirable resource states
need rejuvenation, a drastic “total recall” resource dealloca-
tion technique. We first give examples of how undesirable
memory management state can built up, and then describe
the use of libckp for performing on-line memory rejuve-
nation.

#define MG (1024*1024)
for (i=0; ; i++) {

  if ((ptr1 = malloc(MG)) == NULL) exit(1);
  if ((ptr2 = malloc(MG)) == NULL) exit(2);
  free(ptr1);

}

for (i=0; ; i++) {
  if (i == 0) {
    for (k=0; k<MG/2; k++) ptr1[k] = malloc(32);
    for (k=0; k<MG/2; k++) free(ptr1[k]);

  } else {
        if ((ptr2 = malloc(20*MG)) == NULL) exit(1);
        free(ptr2);

  }
} (b)

(a)

for (i=0; ; i++) {
  if ((ptr = malloc(i*MG)) == NULL) exit(1);
  free(ptr);

}
(c)

Figure 7: Examples of undesirable state accumulation due
to memory allocation and deallocation. (a) Memory leak-
age; (b) memory caching; (c) weak memory reuse.

Figure 7(a) is a memory leakage example. The block of
memory pointed by ptr2 in the nth iteration is “leaked”,
i.e., no longer useful but cannot be reused, when ptr2 is
used to point to another block of memory in the (n+1)th it-
eration. Due to the leakage, the program will eventually run
out of memory and exit. Memory leakage problem is likely
to exist in those programs with complicated control flow,
in which proper memory deallocation may be missing on
certain execution paths. Figure 7(b) is a memory caching
example. When executed on a machine with 30 megabytes
of swap space and a standard version of malloc(), the



code unexpectedly exits at i = 1 because, for efficiency,
the deallocated small blocks of 32 bytes are not coalesced,
and therefore a total of 16 megabytes are not available for
the 20-megabyte request. This kind of caching mechanism
is commonly found in both standard and customized mem-
ory management routines. Strictly speaking, caching is
a performance feature and is not a memory leakage bug.
But when an application runs out of memory and is not
provided with any method to reclaim the cached memory
blocks, memory caching can be as undesirable as memory
leakage4.

Figure 7(c) shows an example of a weak memory
reuse problem which exists in another popular version of
malloc(). With 30 megabytes of swap space, the pro-
gram in Figure 7(c) exits at i = 16 (instead of i = 30)
because, when receiving the 16-megabyte memory re-
quest, the malloc() implementation cannot reuse the
previously deallocated 15 megabytes. As a result, the at-
tempt to allocate additional 16 megabytes fails because
only 15 megabytes are available outside the management
of malloc().

The three examples demonstrate that undesirable mem-
ory management state may build up as a long-running ap-
plication continues to execute, and cause a program to exit
prematurely even when a machine in fact has enough phys-
ical resource to satisfy the memory requirement of the
program. In order to prevent that, memory rejuvenation
can be performed by periodically rolling back the volatile
state to a previously checkpointed “clean” state in order
to discard the undesirable state. Clearly, one limitation
is that memory rejuvenation can only be performed when
the volatile state does not contain any useful information.
For long-running applications consisting of a large num-
ber of independent iterations (as shown in Figure 8(a)), the
boundary between two consecutive iterations are the ideal
place for memory rejuvenation. Note that in Figure 8(a),
new state contains the read-only init state and the
accumulated undesirable state, and Processing() de-
pends only on init state. Figure 8(b) gives the pro-
gram construct for performing memory rejuvenation. The
variableREJUV PERIOD specifies how often rejuvenation
is to be performed in terms of number of iterations. The
“clean” init state is checkpointed once at the very
beginning of the first iteration i = 0. Before processing
each iteration with i being a multiple of REJUV PERIOD,
all useful state that still remains in memory is flushed to the
disk and the volatile state is rolled back to init state
except that the loop index i retains its value to ensure correct
progress.

4This is a reason why a new Virtual Memory ALLOCation package (or
vmalloc) [19] allows specifying exception handlers that will be called
when memory space is out so that garbage collection can be performed at

init_state = Initialization();
for (i=0; i<NUM_CASES; i++) {

  new_state = Processing(init_state, i);
Write_Result(new_state);

}
(a)

init_state = Initialization();
for (i=0; i<NUM_CASES; i++) {

if (i != 0) {
    if (i % REJUV_PERIOD == 0) {
       Flush_Output_Buffer();
       rollback(i);
    }
} else i = chkpnt();

  new_state = Processing(init_state, i);
Write_Result(new_state);

}
(b)

Figure 8: Program construct for rejuvenation. (a) Original
program; (b) with rejuvenation.

On-line memory rejuvenation as shown in Figure 8(b)
is particularly valuable for applications requiring a long
initialization procedure. Another important application
domain is when the accumulation of undesirable state is
caused by some imported library functions of which the
source code is not available. For example, it would cer-
tainly be desirable if memory leakage problem can be iden-
tified and corrected, and there exist several commercial
software tools such as Purify [20] and Sentinel [21]
to help software developers to detect the problem. But
when an application is using an imported software package
and memory leakage is inside that package, the problem
may be detectable but may not be correctable due to the
unavailability of source code or limited knowledge of the
program structure. Garbage collectors [22] can be used to
perform on-line garbage collection to alleviate the mem-
ory leakage problem, but it has certain limitations5 and
also cannot solve the problem caused by memory caching.
Memory rejuvenation is essentially a user-invoked garbage
collector which exploits application-specific information to
perform drastic and effective memory reclamation.

The logic correction program ACCORD as described
in Section 2 consists of 6,000 lines of C code and also
makes heavy use of another 10,000-line imported package
for memory management and high-level structure alloca-
tion. The package has a memory leakage problem and a

the right time.
5For example, a memory block may still have a global variable pointer

pointing to it, but the program has finished using that block and forgot
to free it. This kind of soft leakage problem, in contrast with the hard
leakage problem in Figure 7(a), in general cannot be detected without
application-specific information.



structure caching feature, which caused ACCORD to exit
prematurely when running out of memory. The upper curve
in Figure 9(a) illustrates the scenario. While 100 cases
need to be processed to evaluate algorithm performance,
the program ran out of memory and exited at the 52nd it-
eration on machine A with 30 megabytes of swap space.
By using the technique described in Section 4, the program
took a checkpoint before it exited and then was migrated to
machine B with a 70-megabyte swap space to finish the ex-
ecution. By using the memory rejuvenation technique with
REJUV PERIOD set to 15 iterations, the memory usage
never exceeded 30 megabytes and so the entire execution
could be finished on machine A, as shown in the lower
curve. For this 16,000-line application, only 7 lines of C
code need to be added to the beginning of the main loop in
the main routine to perform memory rejuvenation.

In order to measure the overhead of rejuvenation, we
ran the program on machine B and compared the execution
times of the rejuvenated and the unrejuvenated versions
in Figure 9(b). For the various REJUV INTERVAL val-
ues used in our experiment, rejuvenation actually made
the program run 15%-27% faster. This was because the
checkpointing and rollback overhead was offset by the fol-
lowing two factors. First, the software package linked with
ACCORD has a built-in garbage collector; when a larger
amount of memory needs to be managed, garbage collec-
tion would incur a larger overhead. Second, the memory
locations in use were more scattered due to memory leakage
and so the paging overhead would be higher.

7 Summary

By supporting the checkpointing of persistent state and
providing chkpnt() and rollback() function calls,
our checkpointing library libckp allows powerful exe-
cution controls to be easily incorporated into user appli-
cations. The capability to explicitly exclude part of the
persistent state from the checkpoint provides further flex-
ibility for various applications. The part of state that is
checkpointed and recovered can be used to restore desir-
able state or to discard undesirable state. The part of state
that is not checkpointed can be used to bypass premature
software exits or to accept new input data. Several exam-
ples have been presented to demonstrate the usefulness of
the above concepts.
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