
RAMpage: Graceful Degradation Management for
Memory Errors in Commodity Linux Servers

Horst Schirmeier, Jens Neuhalfen, Ingo Korb, Olaf Spinczyk, and Michael Engel
Department of Computer Science 12, Technische Universität Dortmund

Otto-Hahn-Str. 16, 44221 Dortmund, Germany
Phone: +49-231-755-6142, Fax: +49-231-755-6116

e-mail: {horst.schirmeier, jens.neuhalfen, ingo.korb, olaf.spinczyk, michael.engel}@tu-dortmund.de

Abstract—Memory errors are a major source of reliability
problems in current computers. Undetected errors may result
in program termination, or, even worse, silent data corruption.
Recent studies have shown that the frequency of permanent
memory errors is an order of magnitude higher than previously
assumed and regularly affects everyday operation.

Often, neither additional circuitry to support hardware-
based error detection nor downtime for performing hardware
tests can be afforded. In the case of permanent memory errors,
a system faces two challenges: detecting errors as early as
possible and handling them while avoiding system downtime.

To increase system reliability, we have developed RAMpage,
an online memory testing infrastructure for commodity x86-64-
based Linux servers, which is capable of efficiently detecting
memory errors and which provides graceful degradation by
withdrawing affected memory pages from further use.

We describe the design and implementation of RAMpage
and present results of an extensive qualitative as well as
quantitative evaluation.

Keywords-Fault tolerance, DRAM chips, Operating systems

I. INTRODUCTION

Operating an internet server for business-oriented purposes
requires high availability, often combined with low-cost
demands. The operator of such a server faces a tough decision
– is it more harmful to a business to operate a server without
downtime as long as possible while ignoring the risk of
possible memory errors, or to shut down the server in regular
intervals to perform lengthy memory tests?

A recent study performed by Bianca Schroeder et al. at
Google [1] analyzed the reliability of off-the-shelf memory
DIMMs (Dual In-Line Memory Modules) in a large percent-
age of Google’s server farm. The result of this analysis is
eye-opening – it turns out that permanent memory errors
are an order of magnitude more common than previously
assumed. On average, a permanent error is expected to show
up once a year in a standard 1 GiB DDR memory module.
Thus, when operating a small server with several modules, a
single-bit error may show up once every few months.

In the best possible case, this error causes a program or
operating system crash or malfunction and is comparatively
easy to detect. However, an analysis of errors in CERN’s
systems [2] showed that the probability of silent data cor-
ruption errors – i.e., errors that stay undetected and result in

unexpected modification of some value in a running program
with possibly severe consequences for the application and its
users1 – is several orders of magnitude higher than expected
by the failure statistics for the affected components.

This observation is also supported by a recent study by
Nightingale et al. [3], which states that DRAM errors in
consumer-grade systems are far more likely than expected
from an analysis of radiation effects. They confirm the validity
of the bathtub curve assumption for DRAM components, i.e.,
the failure rate of RAM chips increases sharply beginning at
a certain age of the components.2

For cost-sensitive systems, the probability of an undetected
permanent memory error has to be reduced. Memory tests
can help to detect errors; if memory tests are performed with
a sufficiently high frequency, we expect most errors to be
discoverable. However, shutting down a system in order to
perform tests, e.g., using software like Memtest86+ [4], is
in most cases unacceptable. Thus, in order to avoid system
downtime, we developed an approach to run a memory tester
as a system service during normal operation.

In this paper, we describe RAMpage, our system to perform
proactive online memory tests for commodity x86-64 Linux
systems that enables the operating system to perform graceful
degradation in case a memory error is detected. Compared to
existing memory test mechanisms, our approach requires no
downtime and allows for flexible selection of memory test
frequency and test methods by the system operator. Memory
tests run in user space, only physical memory allocation
and – in case of a detected error – degradation handling is
performed by a kernel module.

The paper is organized as follows. Section II discusses
graceful degradation and its realization in Linux, followed by
an overview of testing methods in section III. The structure
of RAMpage and details of its implementation are described
in sections IV and V. The effectiveness and efficiency of in-
system memory tests are evaluated in section VI. Section VII
discusses related work; finally, section VIII concludes the
paper and gives an outlook to ideas for future research.

1E.g., consider a flipped sign bit in a money transfer . . .
2This is actually in contrast to the findings by Schroeder et al. [1]. We

expect further investigations to clear up this confusion.

II. GRACEFUL DEGRADATION

A system which cannot be shut down for maintenance
due to availability requirements or other circumstances, like
operating a system at a remote site, must provide some
way to handle components that fail during runtime. This
so-called graceful degradation management provides a best-
effort approach to operate a system as long as possible, albeit
potentially with reduced functionality or performance.

Approaches that implement graceful degradation can be
realized on various levels of the system architecture – in a
multi-processor system, a defective CPU could be turned
off and processes migrated away from that processor, in a
system using multiple memory banks, one of the memory
banks or chips could be disabled [5], and a system with
multiple network connections may be able to change routing
tables in case one of the interfaces fails.

In the case of memory faults, however, disabling a
complete memory DIMM implements a rather coarse-grained
level of degradation. If more than one DIMM is available
after all, still a significant portion of the overall memory
would be disabled. Virtual memory allows to control physical
memory use on a finer granularity – the size of a page
frame, typically a few kilobytes in size, depending on the
architecture. However, operating system support for removing
pages from a system’s address space is required to achieve
this fine granularity.

Linux implements several competing – and partially
redundant – frameworks that can handle hardware errors
and changing system configurations. We describe the various
existing approaches below and evaluate their advantages and
shortcomings for use in our memory testing system.

EDAC

Support for reacting to faults in the Linux kernel was
originally derived from separate modules handling memory
ECC and PCI-bus parity errors. The so-called EDAC (Error
Detection and Correction) framework now encompasses
this functionality in recent kernel versions. However, its
functionality is so far quite restricted: In the case of ECC
errors, the error can be logged and the affected memory cell
re-tested; in case of PCI parity errors, the affected I/O transfer
can be repeated. However, the framework currently does not
provide general interfaces to test and possibly disable other
components of a system. While this is envisioned for future
releases, Linux EDAC support is at the moment not useful
as a basis for memory degradation management.

Memory hotplugging

Memory hotplugging enables the addition and removal of
physical memory at runtime. This is useful for special systems
that in fact allow hotplugging and -removal of memory
modules as well as for virtual machines with changing
memory requirements.

total used free shared buffers
Mem: 33017208 31062408 1954800 0 3774740
-/+ buffers/cache: 8007848 25009360
Swap: 3863592 75384 3788208

Figure 1. Memory use in a typical Linux server system, provided by the
free command-line utility.

Hotplugging may also be employed to remove bad memory
regions from kernel use and future allocation. However, since
hotplug’s remove operation was intended to remove complete
physical memory modules from a system, the achievable
granularity is rather coarse. In the current implementation,
only regions of 1024 contiguous pages (4 MiB on an x86
machine with 4 kiB page size) can be removed together. It
turns out, though, that parts of the hotplugging infrastructure
come in quite handy for “liberating” page frames for testing
that are currently in use, as we describe in section V.

hwpoison

The Linux hwpoison framework was originally intended
to support recovery from memory errors signaled by recent
Intel CPUs. Using this framework, a memory page frame
can be declared “poisoned”, which results in killing any
process associated with that page, and precludes its further
allocation. While the framework is intended to be used with
ECC-enabled memory controllers, the available functions to
taint single page frames make it possible to remove selected
4 kiB regions (on x86-architecture machines) containing
faulty memory cells. Additionally, hwpoison provides another
method for claiming allocated page frames, which makes it
even more suitable for our memory tester.

III. MEMORY TESTING

Memory testing is a rather well-explored area of research.
Examples of test algorithms can be found in early papers by
Nair [6] and Hayes [7] as well as in more recent publications
[8], [9], [10]. Based on models for static memory faults,
algorithms of increasing complexity can find errors ranging
from simple stuck-at faults that permanently tie a bit to a
value up to complex, correlation- and timing-based faults.

Most of the memory test algorithms described in the
literature require destructive write access to the memory
range that is examined. Thus, in contrast to ECC scrubbing
approaches (see subsection VII-A) that only read memory
cells and check for ECC errors, a universal memory testing
infrastructure has to possess knowledge about the current
usage state of the memory region to be tested. Obviously,
destructive write tests can only be performed if the memory
to be written into is not in use by the kernel or applications.
The RAMpage testing framework thus has to ensure this for
the memory area requested by the testing scheduler before
testing can commence.

In early Unix systems, the amount of memory used by the
kernel was rather fixed, e.g., the size of the buffer cache for
disk accesses was configured as a compile- or link-time kernel

parameter. Thus, if few applications were running on a system,
a considerable amount of memory would lie unused. Modern
Unix-like systems, however, tend to use up almost all physical
memory for the (unified) buffer caches and VM cache. Fig. 1
shows a snapshot of a Linux system equipped with 32 GiB
of RAM. Of the total amount of memory available, about
25 GiB are actually used for caching.

A memory tester for a current system thus has to “liberate”
page frames from the system – either from the kernel or
the running processes. In theory, this is possible for all
page frames, since kernel and application memory accesses
occur using logical memory addresses. In practice, however,
it is not always possible to gain access to all available
memory in a system. For example, DMA buffers for I/O
devices may be assigned to specific physical addresses in
the peripheral’s configuration by a device driver; MMU page
tables in main memory are usually not relocatable. In future
systems, IOMMUs [11] might solve the DMA problem.
However, a certain amount of memory will still be untestable
since it is reserved by the kernel. Employing virtualization
approaches like Xen or KVM seems to be a good approach to
test all the memory used by a virtual machine. However, this
still does not provide access to all of the physical memory
of a system and, thus, will not necessarily increase reliability
– there is no simple way to test memory the virtual machine
monitor itself has allocated.

Another question influencing the design of RAMpage is
how many pages need to be tested concurrently. All pages
that are to be tested at the same time, e.g., in order to find
correlation errors, are not available to the rest of the system
during the test. In general, a tester should only allocate as
many pages as required and release pages as soon as the test
is finished in order to minimize the testing overhead.

However, the specific structure of Linux memory man-
agement and other, non-functional requirements to memory
testing pose additional restrictions, which are discussed in
detail in the following section.

IV. SYSTEM STRUCTURE

Memory testing systems can be implemented in various
different ways – e.g., there exist pure kernel-mode as well
as pure user-mode approaches (see section VII for a detailed
discussion). In the following paragraphs, we describe the
requirements to our memory testing system as well as
problems restraining some design options, and detail the
resulting infrastructure components and their interaction.

A. Design Considerations

The major intention underlying the design of RAMpage
was to provide a solution to perform online memory tests in
current commodity machines that requires as few changes to
the operating system as possible. Since many server systems
run the Linux operating system, basing our infrastructure on
this platform was an obvious choice.

A useful memory tester has to be able to cover as much
physical memory as possible. Special care has to be taken to
ensure that the real, physical RAM content is actually tested
and that the tests operate on physical addresses, so a faulty
component can be identified easily.

RAMpage is designed to require only a minimal set of
functionality in kernel mode, giving a maximum flexibility to
adapt the system’s components running in user mode. Thus,
only critical, system-level functionality – such as “liberating”
(find details on how this is done in section V) and allocating
physical memory, and disabling the CPU cache for the page
frames to be tested – is implemented as a dynamically
loadable kernel module. Most of the functionality, especially
the tests themselves, are handled in a user-mode component.

Since our aim was not to reinvent memory testing, the
RAMpage user-space component does not perform memory
tests itself, but delegates them to a flexibly exchangeable
memory test plugin. The plugin determines the physical frame
numbers to be tested and performs the specific tests. The
user-space component itself takes care of common operations:
requesting and mapping page frames, returning good memory
to the kernel and marking bad memory. In the current version
described in this paper, RAMpage provides ports of all tests
that are available in the Memtest86+ [4] code base as memory
test plugins (cf. fig. 4).

Implementing the major part of the tester as a user space
component has an additional advantage. Dealing with a
normal user-mode process, a system administrator can directly
control the performance impact by using standard Unix
methods (such as nice).

However, several architectural properties as well as Linux
idiosyncrasies also influenced the design. The impact of these
is described in the following paragraph.

B. Obstacles Influencing the Design

Performing memory tests that operate on a page-frame
basis requires safe access to physical memory, which is
usually not supported by current operating systems like
Linux.3 While a pure user-space–based testing approach
would be preferable – no kernel modifications are required,
reducing critical in-kernel code to zero – the preconditions for
safely running such tests while providing access to physical
memory cannot be guaranteed.

The page frames under test, thus, are required to be
unused by the kernel or other processes. This can easily
be guaranteed by allocating the memory pages to the testing
process itself. However, requesting memory from user space
is only possible using system calls such as mmap, which
provide a set of virtual memory pages. The kernel does
not provide information on the physical location of these
virtual memory pages to the user mode process; in fact, the

3Using root privileges, general access to physical memory is possible in
Linux using the /dev/mem special device. However, outside of the kernel
no information is available as to the current use of a specific page frame.

User space memory tester

Physmem claimer kernel module

Memory
testing
plugins

Page
requests

1 Release/
taint pages

3Allocated
pages

a. Obtain page frames

b. Run
 memory
 tests

c. Obtain
 results
 from tester

Linux kernel

U
se

r
sp

ac
e

K
er

ne
l

sp
ac

e

2

Figure 2. RAMpage’s overall structure: The user-space memory tester with
exchangable testing plugins consults the physmem kernel module to obtain
physical page frames, and to taint frames positively tested for defects.

Linux VM system does not even guarantee that the logical
address space is backed by physical memory at every point
in time.4 While a user space test could try to reserve as
many pages as are available, it cannot be guaranteed that
this method actually covers a large amount of physical page
frames. In addition, the memory reserved for testing would
not be available to other applications, which may result in
reduced system performance. Therefore, a memory tester
running in user space alone may only actually test a small
percentage of the total physical memory; one example for
such a tester is Effo, described in detail in section VII.

In consequence, a memory tester has to be able to request
physical memory page frames in order not to repeatedly re-
test a small memory area. Knowledge of physical addresses
is also needed for providing hints to the graceful degradation
handling mechanism. RAMpage therefore implements a
kernel module to allocate physical page frames to the user
mode testing component.

C. High-Level Structure

RAMpage’s overall structure is shown in fig. 2. The system
consists of two major components, the physmem kernel
module that handles page frame allocation, deallocation and
tainting, and the user-mode component that performs the
actual memory tests running as a normal process among
other user-mode processes.

D. System Components

The tests run in a configurable loop in the userspace tester.
Before each test pass, it requests a set of physical page
frames to be tested by the specific memory-test plugin (a).

This list of page frame numbers is passed to the physmem
kernel module (1), which tries to obtain the requested page

4Still worse, Linux supports memory overcommitment, allowing processes
to allocate more memory than actually physically available in the system,
including swap space. A memory tester that allocates huge amounts of
virtual address space may thus fall victim to Linux’s out-of-memory killer.

User space memory tester

Page
requests

t
a
i
n
t

"
b
a
d
"

p
a
g
e

f
r
a
m
e
s

4bAlloc'd
pages

Physmem
claimer
kernel

module

Linux
kernel

Mark
bad

Return
frame

Frame
claimer

foreach
frame

in list

Map
to VM

munmap(..)

r
e
t
u
r
n

"
g
o
o
d
"

p
a
g
e

f
r
a
m
e
s

mmap(..)ioctl(..)

3

ioctl(..)

4a21

Figure 3. RAMpage’s physmem page frame claimer kernel module and its
system call interface.

frames from the frame claimer (see section V for details
on the different claiming methods) and returns a list of
successfully claimed page frames to the tester (2). The tester
then maps the successfully requested page frames into its
virtual address space using a standard mmap system call.
The tester passes the page frame list to the memory testing
plugin that implements the specific test algorithm (b).

After testing is finished, the tester obtains a result list from
the testing plugin that indicates the test results: successfully
tested vs. error detected (c). The successfully tested page
frames are then deallocated using the munmap system call,
whereas page frames that contain a detected error are squealed
to the kernel module (3). The module then marks these page
frames as “bad” to avoid further allocation.

The structure of the kernel module is shown in fig. 3.
The module uses a device driver interface which imple-
ments the ioctl and mmap system calls for the device
(/dev/physmem). The module waits for commands passed
by the user space via one of two ioctl calls to request
a set of physical pages (1, 2) or to taint a page frame
(4b). These commands are carried out via the frame claimer
respectively the hwpoison subsystem. Mapping the page
frames to be tested into the user space tester’s virtual memory
is done by a standard mmap system call (3) performed on
the device; successfully tested pages are simply unmapped
from the tester’s memory space using the munmap system
call implemented by the kernel module (4a).

E. Test Scheduling

Providing a plugin interface for different memory tests
provides an important degree of freedom for a system ad-
ministrator who wants to run online memory tests. However,
the scheduling of tests is as important as the test algorithm
selection, since this has the potential to heavily influence
performance characteristics of the tester.

RAMpage provides several different schedulers, most
notably the “blockwise” and the “slow” scheduler. The
“blockwise” scheduler batches blocks of 512 page frames
together and tests these in a burst. The test is only performed

Test # Description
0 Address test, walking ones (ineffective)
1 Address test, own address
2 Moving inversions, ones & zeros
3 Moving inversions, 8-bit pattern
4 Moving inversions, random pattern
5 Block move, 80 moves
6 Moving inversions, 32-bit pattern
7 Random number sequence
8 Modulo 20, random pattern

Figure 4. Memtest86+ [4] tests ported to RAMpage. Test #0 cannot be
run effectively as it needs access to a large fraction of physical memory at
the same time.

if the last successful test lies a specified time in the past;
for benchmarking purposes this scheduler can also be set to
“full-speed”, resulting in continuous memory tests. In contrast,
the “slow” scheduler is intended to significantly reduce the
memory testing overhead. This scheduler tests blocks of 4096
page frames (16 MiB) each and distributes tests of different
blocks so that the complete physical memory of a system is
tested within 24 hours (or any other configurable timeframe).

V. IMPLEMENTATION DETAILS

RAMpage is implemented in ANSI-C for the kernel mod-
ule and the performance-critical test algorithms, and Python
for the user-space testing infrastructure. The kernel module
contains 2.114 lines of C code, whereas the user-space is
implemented in 1.447 lines of Python code. The memory
tester plugins, a port of the well-established Memtest86+ [4]
tests (fig. 4), add up to 867 lines of C code. One limitation
is that the address line test #0 cannot be run effectively in
our infrastructure, as it needs access to a large fraction of
physical memory at the same time. This would defeat our
design goal of minimal-impact online testing.

In the following paragraphs, we elaborate on some of the
roadblocks that showed up during the implementation, and
explain Linux kernel details where necessary.

A. Memory Management

As stated earlier, actually getting access to unused and
especially used memory page frames is one of the harder
problems to be solved when implementing a memory tester.
Since almost all physical memory is allocated to the kernel,
processes, or the buffer cache, there is only a small amount
of actually free memory available at runtime. Our memory
tester thus has to claim memory from the kernel in order to
perform tests, and return the allocated frames after testing.

Linux manages allocation of memory through the page
allocator, which splits the physical memory into zones. Each
of the zones is maintained by a buddy allocator, which
manages memory in blocks sized in powers of two. In Linux,
the base unit for the buddy allocator is a page frame, so the
managed objects have sizes of 4 kiB, 8 kiB, 16 kiB, etc.

The page allocator is used to allocate MMU page table
entries for virtual memory management. All other memory
allocators in Linux (such as SLAB [12]) rely on the page
allocator to claim memory. Its most important user is the
page cache, which contains caches of file data as well as
anonymous memory (i.e., memory that is not related to any
file) used by processes, including all text and data segments,
read and written file contents, and meta data.

Important memory areas that are not managed by the page
allocator include kernel text and data, as well as memory
used during the boot process. These are managed by the
separate bootmem allocator.

B. Claiming Page Frames

RAMpage’s userland component obtains a set of physical
page frame numbers from the currently employed test sched-
uler. This set is passed to the kernel memory claimer module,
which tries to allocate the frames using the kernel’s buddy
allocator. When they have successfully been allocated by the
kernel module, it marks them as non-cacheable – otherwise
the memory tester would mostly test the consistency of
the CPU’s data caches. The corresponding list of frames is
returned to the userland component, which then can map
the successfully claimed page frames into its virtual address
space and commence testing.

It turns out that the buddy claimer alone varies strongly in
whether it succeeds to claim page frames or not, depending
on how much memory is currently being used, and for what
purpose (cf. section VI). Therefore we complemented the
claimer with two additional claiming methods, both more
intrusive and side-effect–prone but also more effective in
some situations: 1. Linux’s memory hotplugging infrastruc-
ture provides an implementation for offlining large chunks
of memory (multiples of 4 MiB) by migrating its contents to
other areas (originally intended for physical removal of RAM
modules at runtime). 2. The hwpoison subsystem contains
a page-“shaking” function for (likewise non-destructively)
liberating a single page frame for subsequent claiming via
buddy or hotplugging.5 Due to their potential for harming
system performance (e.g., the hotplug claimer contains a
code path that completely drops the better part of the buffer
cache), these additional measures can be configured by the
user-space tool for each page frame to be claimed.

C. Page Frame Testing and Poisoning

The test of a page frame can have one of two outcomes.
In most cases, the test runs without detecting any error, so it
can be returned to the kernel for further use. This happens
by simply unmapping the page, which is then automatically
repossessed by the kernel’s memory management.

In case the memory test detects one or more errors in
a page frame, however, degradation management is being

5Note that this excludes the destructive part of hwpoison that resorts to
killing processes when claiming fails (cf. section II).

initiated. Instead of returning the affected page frame to
the kernel for reuse, the page has to be specially marked
to ensure it will not be allocated again until system reboot.
Marking memory as “bad” is performed by the kernel module
utilizing the hwpoison framework.

D. Portability

In principle, our implementation can easily be ported to
other hardware architectures, such as i386 or PPC. Practical
limitations arise from the fact that Linux currently does
not implement memory hotplugging and/or hwpoison for all
possible architectures. In those cases, therefore, either these
subsystems would need to be ported, too, or other means to
claim used page frames would have to be discovered.

Porting RAMpage to another operating system would
require rewriting the kernel module specifically for the
target-system’s memory-management internals. The user-
space component including existing test plugins would remain
unchanged, aside adaptations to another OS kernel interface.

VI. EVALUATION

We evaluated RAMpage under several qualitative and
quantitative aspects. The tester’s effectiveness was evaluated
by simulating defects in a virtual machine as well as using
real defective RAM modules. RAMpage’s efficiency was
assessed by measuring both maximum test throughput and
physical memory coverage for different claiming methods in
varying system load scenarios. Finally, a practicality analysis
was conducted by measuring side-effects on a set of standard
benchmarks.

Unless mentioned otherwise, all measurements were con-
ducted on a standard Dell Optiplex 755 PC (Intel Core 2
Quad Q9550 CPU at 2.83 GHz, 2 GiB DDR-2 800 RAM)
running Debian Linux 6.0 with a 64-bit x86-64 SMP-enabled
Linux 2.6.35 kernel6. The following paragraphs describe the
experiments we conducted and the conclusions we draw.

A. Effectiveness: Virtually and Really Broken Hardware

In order to assess RAMpage’s effectiveness, we conducted
a series of automated tests with FAUmachine [13], a virtual
machine environment specifically designed for hardware-error
injection. FAUmachine can be configured to inject single-bit
errors at arbitrary memory locations.

Well-reproducible results showed that randomly chosen
single-bit stuck-at faults are detected and reported reliably
(unless the guest OS fails to boot and/or start the test at all);
subsequently the testing framework successfully removed
the frame from the memory subsystem. A small amount of
test runs did not locate the error, most probably due to the
fault being located in a frame our kernel module is unable
to claim (cf. subsection VI-B).

6Linux was slightly modified in order to export some internal symbols
needed by our module, and to timeout faster when trying to hotplug memory.

For proving the usability of our testing framework with
real broken memory hardware, we conducted experiments on
a two-way AMD Opteron 250 server with eight 1 GiB DDR1-
400 modules (Apacer ECC Registered DDR-400, with ECC
disabled in the BIOS), one of which was known defective.
Memtest86+ runs confirmed a vast amount of single- and
multi-bit errors throughout the module’s complete address
range; after further manual analysis we hypothesize that
either the buffer chip or one of the 16 memory chips on that
module is causing the faults.

RAMpage successfully detected all defective page frames
from the faulty DIMM, and removed them from further use.
After offlining the problematic address range, the machine
continued running smoothly with the remaining 7 GiB of
memory. Placing the defective DIMM in the “wrong” memory
slot on the mainboard led to Linux failing to boot – an effect
expected when essential kernel data structures or machine
instructions are placed in the affected address range.

B. Efficiency: Throughput and Memory Coverage

In order to assess RAMpage’s page-frame claiming effi-
ciency (i.e., memory coverage) and testing throughput, we
logged the progress of the three page-frame claiming methods
over time in four different scenarios (fig. 5):

• A freshly booted, idle machine with most frames unused,
• a full buffer cache (by reading a large amount of files

beforehand),
• a single process hogging all memory and initially writing

data to it to circumvent memory overcommitment,
• and a combination of the last two scenarios.

About 4.5% of all frames (∼92 MiB) are considered
“untestable” right from the start: These page frames, marked
with the reserved flag, are not even touched by other kernel
subsystems such as, e.g., memory hotplugging, and kernel
source comments advise not to tamper with these. A closer
look revealed that the majority of these frames hold the
kernel itself and its data structures.

The experiments indicate that in most scenarios, a large
percentage of the remaining 500,807 page frames can be
claimed and tested. The buddy claimer fails to claim frames
that are in use by the buffer cache or user-space applications.
The hotplug and shaking methods prove significantly more
effective for these frame types, at different levels of success.
We cannot give a good explanation for the suboptimal
memory coverage in the last scenario – a full buffer cache,
evicted by a user-space memory-hogging application – and
can only conjecture a quirk in the kernel subsystems we
utilize for claiming.

The test throughput (using the unthrottled “full-speed” test
scheduler) is sufficient to test the evaluation PC’s 2 GiB
of RAM in well under 30 minutes, which emphasizes
RAMpage’s practicality. As outlined in subsection IV-E,
one pass can be stretched to a longer period of time (e.g.,

Time (minutes)

#
 F

ra
m

e
s
 t

e
s
te

d

0

131072

262144

393216

524288

0 10 20 30 40

lll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
lll l

idle

0 10 20 30 40

ll

fullcache

0 10 20 30 40

lllllllllllllllllllllllllllllllllllll l llllllllllllllll lllllllllllllllllllllllll llllllll

memhog

0 10 20 30 40

lll
llllllllllllllllllllllllllll ll l lllllllllllll

cache+memhog

l l l Buddy claimer
Hotplug + Buddy claimer
Hotplug + Shaking + Buddy

Figure 5. Page-frame claim rates for the different claiming methods in four load scenarios. The dashed red line indicates the maximum amount of testable
pages in the 2 GiB address range (500,807 of 524,288 pages).

Linux kernel allmodconfig POV−Ray iozone

Baseline (only benchmark)

Slow MT, Buddy claimer

Slow MT, Hotplug + Buddy claimer

Slow MT, Hotplug + Shaking + Buddy

Full−speed MT, Buddy claimer

Full−speed MT, Hotplug + Buddy claimer

Full−speed MT, Hotplug + Shaking + Buddy

no MT but CPUburn

B
e
n
c
h
m

a
rk

 r
u
n
ti
m

e
 (

s
e
c
o
n
d
s
)

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

Figure 6. Effects of various online memory testing schedulers and frame
claimers on Linux 2.6.35 building (allmodconfig), POV-Ray, and IOzone
benchmarks (averages, with error bars indicating SD).

read reread

T
h
ro

u
g
h
p
u
t
(M

iB
/s

)

0
1
0
0
0

2
0
0
0

3
0
0
0

l

ll

l

lll
lllllll
lllllll
l

llll
lllllll
llll
lllll
l
ll
l
lll
lllllllllllll
lllllllllllllllllllllllllllllll
lllllllllllllllllllllllllll

l
l

l

lll
ll
l
l
l
lllllllllllll
llllllllllllllllllllllllll
l

l

l

lll
lll
ll
llllllllllllll
llllllllllllllllllllllllll
llllllllllllllllll
l

lllllll
lllllllll
llllll
ll
l
lllllll
ll
ll
ll
ll
l

lllllllllllllllllllll
lllllllllllllllllllllll
llllllllllllllllllllllllllllllllll
l

l
llllllllllll
lllllllllllllllllllllllllllllllll
ll
l
lll
l

l

lllllllllll
lllllllllll
lll
l

Figure 7. Memory test effects on IOzone “read” and “reread” benchmark
throughput averages (with error bars indicating SD), with individual
measurements for the full-speed scheduler with hotplug and shaking claimers.

24 hours) with the “slow” scheduler, still re-testing the
memory in a reasonable time window.

C. Practicality: Impact on Performance and Latency

RAMpage’s impact on performance or latency of concur-
rently running software – system services, user applications,
whatever the machine’s primary purpose should be – is of
high practical relevance. If the test is qualitatively sound but

disturbs normal operations severely, the intended purpose to
replace offline testing is put into question.

We chose a set of common benchmark scenarios:
• Linux 2.6.35 build (“allmodconfig”), highly parallelized

(“make -j8”), known for high CPU and I/O loads, and
memory consumption.

• POV-Ray (v3.6.1, run in benchmark mode), a single-
threaded CPU benchmark with moderate memory re-
quirements and close to zero I/O.

• IOzone (r3.308, run with write/rewrite and read/reread
tests, a file size of 1,500 MiB, and block sizes of all
powers of two between 4 kiB and 512 kiB), an I/O-
bound filesystem benchmark expected to be sensitive to
buffer cache contents being dropped.

• tbench (v4.00, run with a single client on the same
machine), a file-server benchmark stripped of the actual
server-side operations, yielding a pure TCP socket
benchmark for latency measurements.

Note that only one benchmark (Linux build) utilizes all
CPUs in the test machine. We presume that load scenarios
not occupying all available resources are relatively common.

Fig. 6 shows benchmark runtime averages with a baseline
measurement, runtimes with the memory tester in action –
comparing the three page frame claimers and the “slow” with
the “full-speed” test scheduler, and measurements without
the memory tester but a single-threaded CPU-consuming
process (“CPUburn”). Notable are several observations:

• The “slow” test scheduler, aiming at reasonable memory
test cycles of 24 hours, has no significant impact on
any of the benchmarks. A system’s normal operation is
not disturbed, allowing to employ RAMpage regularly.

• Especially the kernel build is hit by the full-speed
memory tests, in particular when the hotplug and
shaking methods for frame claiming are in use. The
slowdown is partially due to the CPU cycles the
Memtest86+ tests consume (compare to the CPUburn
measurements which resemble this effect). Additional
penalties supposedly come from a high memory bus
load (all test schedulers) and the buffer cache pages
that need to be reloaded from hard disk after they have

A
v
g

 a
n

d
 M

a
x
 L

a
te

n
c
y
 (

s
e

c
o

n
d

s
,

lo
g

.
s
c
a

le
)

1
e

−
0

5
1

e
−

0
4

1
e

−
0

3
1

e
−

0
2

Figure 8. Memory test effects on average (with error bars indicating SD)
and maximum latency for the ReadX operation in the tbench benchmark
with one client connected to a server running on the same host (Y axis on
logarithmic scale; color coding legend in fig. 6).

been dropped for testing (hotplug and hotplug+shaking
claimers, the latter being even more aggressive towards
buffer cache frames – cf. subsection VI-B).

• The single-threaded, CPU-bound POV-Ray benchmark
is not affected at all.

• IOzone’s total runtime seems not to be affected either,
but a closer look at only its reading benchmarks (fig. 7)
reveals that – as expected from the claiming methods’
behavior already described – the hotplug and shaking
methods in some test runs affect the reading throughput.
The scattering of results can be explained by some
runs with exactly the wrong (still to be read by the
benchmark) or the right (already read and not needed
anymore) buffer cache frames being dropped.

Fig. 8 shows average and maximum latencies for the ReadX
operation (which we picked to get comparable numbers as
latencies differ by a few percent among the different opera-
tions) of the tbench benchmark talking via TCP to a server
running on the same host. Although the average latencies
do not vary significantly among the different claiming and
test scheduling strategies, the maximum latencies go up by a
factor of 14 from the baseline measurement to the hotplug
claimer variants. As memory bus and CPU load stays the
same for all measurements with memory testing, only the
claiming method itself can be blamed for these rare spikes.
As the memory hotplug subsystem was never intended for
continuous use but occasional system maintenance events,
it was designed for safety rather than for high performance,
which we conjecture to be causing the latency extrema.

VII. RELATED WORK

We consider related work from three distinct areas,
software-based online and offline memory tests, hardware-
based methods for memory error detection and correction,
and operating-system integrated EDAC frameworks.

A. Memory Tests

Memtest86+ [4] is an offline memory tester running
directly on the hardware of x86-based systems. It performs

continuous tests using different test patterns and algorithms
such as Moving Inversions and Modulo-X. Memory used by
the tester itself is tested in advance to ensure correct operation.
Thus, all available physical memory can be tested. In addition
to tests under normal operating conditions, stress testing
memory outside its specifications is possible by adjusting the
memory refresh rate and disabling hardware ECC checks.

Bare-metal memory testing requires downtime of the
system. This is usually problematic, however, it reduces side-
effects from other running processes. Bare-metal memory
testers can be considered complementary to OS-based testers.
Their major use is as a hardware-specific tool that is employed
if the memory is already suspected of being faulty, whereas
OS-based testers can serve as permanent monitoring tools.

A Solaris/SPARC-based online memory test is presented
by Singh et al. in [14]. This approach uses a simple, kernel-
based architecture that sequentially tests memory ranges
by applying the fault model of Nair et al. [6]. The frame-
scheduler abstraction provided is rather minimalistic and
calculates memory ranges to be tested based on the configured
allocation size and the test-iteration number.

Frames with defects are excluded from further use and
processes that accessed a frame containing an unrecover-
able error are killed. Experimental results are obtained by
installing known faulty memory modules into a server and
running two different workloads. The detected faults differed
between the experiments. Only about one third of the detected
errors overlapped – a result that correlates with findings of
Schroeder et al. [1], which state that system utilization has
a strong influence on the number of memory errors detected
by the ECC hardware. Singh’s results seem to support this.

At first glance, this system resembles our RAMpage system.
However, the pure kernel-mode implementation reduces
the flexibility, e.g. in selecting appropriate test algorithms,
significantly. In addition, running on a well-defined SPARC
platform eliminates many of the problems we had to face with
off-the-shelf x86 systems. Singh et al. did not publish results
of a performance evaluation, which we consider essential.

Effo GPL is a user-space memory tester for Linux
that implements several of the fault models available in
Memtest86+. It acquires frames in a straight-forward way by
allocating all obtainable memory and using a kernel module
to translate virtual to physical addresses. Unfortunately, the
publication that described the program and test algorithms
has been removed from the program’s website. Similar
implementations of purely user-space memory tests exist,
such as memtester [15].

Similar to a bare-metal tester, Effo monopolizes system
memory. Since the tester cannot directly acquire specific
page frames from user space, it can only do so by allocating
many frames and hope that the frame to be tested is included.
This monopolizing of resources is a serious shortcoming
for a memory test that should not severely degrade the
system’s performance. Additionally, this approach cannot

predict which frames are to be allocated.

B. Fault Management

Solaris Predictive Self Healing [16] is a framework to
improve system reliability using a fault manager to interpret
signaled hardware errors. If a faulty component is detected,
a fault manager tries to offline that component. The system
consists of components to start, stop, and restart services
[17], to enrich fault logs, and to provide fault prediction in
cases where a component’s failure is known to be frequently
followed by others. This implementation is one of the most
advanced fault management systems in commodity operating
systems. However, it requires a large amount of hardware
add-ons and generally operates on a more coarse-grained
basis compared to our memory-testing approach.

The Linux EDAC framework [18] is used to handle
hardware-related errors, mostly restricted to handling ECC
memory errors. It provides an abstraction layer representing
the physical layout of memory in modules, down to the
module’s chip-select rows. This requires dedicated drivers for
specific chipsets. The framework can also detect ECC-errors
in non-RAM components, such as buses, DMA engines,
caches, etc. EDAC is not CPU-architecture specific, and
currently, there are drivers for both x86 and PPC architectures.
While EDAC is useful for ECC-equipped systems, its
functionality relies heavily on hardware support for error
detection, making it unsuitable for commodity systems.

Linux can log CPU-specific machine check exceptions,
such as correctable and uncorrectable errors, using the mcelog
user-space tool. The kernel itself performs immediate actions,
like killing processes. While mcelog proves to be a useful tool
for system administrators, again, it requires the existence of
specific hardware, i.e., MCE-enabled x86 CPUs. In addition,
it does not provide methods to handle errors.

C. Hardware-based approaches

Dell discusses shortcomings of SECDED (Single Error
Correction, Double Error Detection) ECC [19]. Multi-bit
errors, caused by a single memory chip failing completely,
are very likely. However, SECDED cannot handle these.

Chipkill is a mechanism designed to survive such failures
([20], [21], [10] and [19]). It expands the granularity of
memory accesses, protecting against the failure of a complete
memory chip. Sun UltraSPARC-T1/T2 [22] and AMD
Opteron [23] systems implement this strategy by accessing
two memory modules simultaneously. While Chipkill is a
useful extension to general ECC-based protection mechanism,
it is only employed in expensive high-end server systems.

The AMD K8 architecture introduced memory scrubbing
[24]. The CPU can continuously read memory in order to
provoke ECC errors early, i.e., as long as only correctable
single-bit errors show up. However, this technique is only
useful for ECC-equipped systems, since the scrubbing is
performed read-only. According to AMD’s documentation,

currently DRAM scrubbing is unsupported, which restricts
hardware-supported scrubbing to cache memory.

Solaris x86 supports memory scrubbing. Like AMD’s
hardware scrubber, this feature is only useful on ECC-
equipped systems. Of interest is a section in the scrubbing
code [25] defining a 12 hour testing interval for the complete
physical memory of a system, commenting “twice the
frequency the hardware folk estimated would be necessary”.

VIII. DISCUSSION AND FUTURE WORK

Implementing an online memory tester was a more
complex task than originally envisioned. While our general
approach is convincingly simple, many details stood in the
way of obtaining optimal results.

The most complex task was to understand and partially
reverse-engineer the complex and convoluted Linux memory
management system. This exhibited one of the areas of Linux
that are in dire need of improvement. If the Linux memory
management subsystem would provide documented, useful,
and invariable APIs, a lot of reverse engineering would
have been unnecessary. In addition, our task was aggravated
by the idiosyncrasies of the underlying x86 CPU and VM
architecture. Many experiments were required until a reliable
method of claiming memory from the kernel was procured;
by improving the reliability of the system, we had to abandon
the idea of testing all available physical memory. So, in some
respect, our online memory test is a best-effort approach that
nevertheless is able to improve the reliability of a commodity
Linux-based x86-64 system. It would be interesting to see
how complex an implementation of RAMpage on different
Unix-like systems, e.g., BSD, Solaris, or MacOS X, is.

Considering the amount of obstacles to overcome, we
think that the achieved results – a high percentage of testable
memory, acceptable test times for the complete testable
memory range while requiring a comparably low overhead
in compute time – are quite remarkable. In order to prepare
the memory testing system for real-world use, however, our
prototype still has to undergo extensive testing, especially
with a larger set of benchmarks.

Additional improvements are closely tied to Linux kernel
internals. For example, a tighter integration with the memory
management would allow to test an even higher percentage
of the overall physical memory. The complexity of Linux
memory management [26] and the high rate of changes,
however, make this seem a daunting task. In addition, an
integration with a Linux-based fault management framework
would be worthwhile. However, such frameworks are still in
rather early stages of development, especially compared to
the functionality provided by Solaris.

Despite all the positive properties of our testing approach,
some general drawbacks of an online memory test shall not
remain unmentioned. Overcoming these limitations is an
interesting topic for future research.

The implemented approach is unable to avoid errors that
show up when a program accesses a page frame before it has
been tested. This also implies that all program execution
in-between a successful check of a page frame and a
subsequently found error on that same page frame may be
affected by that error. Thus, the current solution only reduces
the probability of an application using a defective memory
cell, but cannot avoid the situation completely.

A more invasive change to the Linux kernel that would
improve both reliability and memory coverage could test a
page frame before it is given out to any process or kernel
driver for the first time. In case a frame is detected as
containing a fault, the kernel would then have to choose a
replacement frame. Obviously, this approach would introduce
a significant latency in page allocations; future experiments
will show if a system implementing such a pre-allocation
test-policy is able to perform sufficiently well, for example
by caching/pooling tested frames until they are needed.

An idea complementary to the kernel-based RAMpage
approach outlined in this paper is to position the memory
testing infrastructure below the running OS kernel. This could
be achieved by employing a hypervisor like Xen, which
provides kernels running on top with the illusion of running
on a physical machine. Advantages of this approach would
be the possibility to test all of a (virtual) machine’s memory
and to gain a certain level of operating system independence.
A possible drawback would be the more complex installation
and configuration of such a system. Since ever more server
systems are being based on virtualization, however, this might
not cause significant overhead in these systems.

Finally, it would be interesting to see how well our online
memory tester is portable to different architectures and,
considering the inherent limitations of these systems, to
embedded systems running Linux.

ACKNOWLEDGMENTS

We thank Ramin Yahyapour and Jörg Gehrke from the
IT & Medien Centrum (ITMC) Dortmund for supplying us
with known defective DRAM modules and x86-64 server
hardware. We also thank Volkmar Sieh for his support
regarding FAUmachine.

This work is supported by the German Research Foun-
dation (DFG) priority program SPP 1500 under grants no.
MA943/10-1 and SP968/5-1.

REFERENCES

[1] B. Schroeder, E. Pinheiro, and W.-D. Weber, “DRAM er-
rors in the wild: A large-scale field study,” in SIGMET-
RICS/Performance. ACM, 2009.

[2] B. Panzer-Steindel, “Data integrity,” CERN, Geneve, Switzer-
land, Tech. Rep., 2007.

[3] E. B. Nightingale, J. R. Douceur, and V. Orgovan, “Cycles,
cells and platters: An empirical analysis of hardware failures
on a million consumer PCs,” in Proc. of EuroSys ’11. ACM
Press, Apr. 2011, pp. 343–356.

[4] S. Demeulemeester. (2011) Memtest86+. [Online]. Available:
http://www.memtest.org/

[5] IBM, “IBM Chipkill Whitepaper,” http://www.ece.umd.edu/
courses/enee759h.S2003/references/chipkill white paper.pdf.

[6] R. Nair, S. Thatte, and J. Abraham, “Efficient algorithms for
testing semiconductor random-access memories,” IEEE Trans.
on Computers, vol. C-27, no. 6, pp. 572 –576, Jun. 1978.

[7] J. P. Hayes, “Detection of pattern-sensitive faults in random-
access memories,” IEEE Trans. Comput., vol. 24, no. 2, pp.
150–157, 1975.

[8] M.-F. Chang, W. K. Fuchs, and J. H. Patel, “Diagnosis and
repair of memory with coupling faults,” IEEE Trans. Comput.,
vol. 38, pp. 493–500, Apr. 1989.

[9] V. P. Srini, “Fault location in a semiconductor random-access
memory unit,” IEEE Trans. Comput., vol. 27, pp. 349–358,
Apr. 1978.

[10] D. H. Yoon and M. Erez, “Virtualized and flexible ECC for
main memory,” ACM SIGARCH Comput. Archit. News, vol. 38,
pp. 397–408, Mar. 2010.

[11] AMD, Inc., “AMD I/O Virtualization Technology (IOMMU)
Specification revision 1.26. http://www.amd.com/us-en/assets/
content type/white papers and tech docs/34434.pdf.”

[12] J. Bonwick, “The slab allocator: An object-caching kernel
memory allocator,” in Proc. of the USENIX 1994 Tech. Conf.,
Vol. 1. Berkeley, CA, USA: USENIX, 1994, pp. 6–17.

[13] S. Potyra, V. Sieh, and M. D. Cin, “Evaluating fault-tolerant
system designs using FAUmachine,” in EFTS ’07: Proceedings
of the 2007 Workshop on Engineering fault tolerant systems.
New York, NY, USA: ACM, 2007, p. 9.

[14] A. Singh, D. Bose, and S. Darisala, “Software based in-system
memory test for highly available systems,” in MTDT ’05:
Proc. of the 2005 IEEE International Workshop on Memory
Technology, Design, and Testing. Washington, DC, USA:
IEEE Computer Society, 2005, pp. 89–94.

[15] C. Cazabon. (2009) memtester website. [Online]. Available:
http://pyropus.ca/software/memtester/

[16] Solaris 10 what’s new: Predictive self-healing. [Online].
Available: http://docs.sun.com/app/docs/doc/817-0547/esqej

[17] R. Romack, Service Management Facility (SMF) in the Solaris
10 Operating System, Sun, Part No 819-5150-10, Feb. 2006.

[18] D. Thompson, “Linux kernel documentation: EDAC – error de-
tection and correction,” [Linux 2.6.35]/Documentation/edac.txt,
Aug. 2010.

[19] T. J. Dell, “A white paper on the benefits of chipkill-correct
ECC for PC server main memory,” in IBM Whitepaper, 1997.

[20] C.-L. Chen, “Symbol level error correction codes which
protect against memory chip and bus line failures,”
US Patent 7093183, Feb. 2001. [Online]. Available:
http://www.freepatentsonline.com/7093183.html

[21] S. P. Olarig, “Technique for implementing chipkill in a memory
system,” United States Patent 7096407, Feb. 2003. [Online].
Available: http://www.freepatentsonline.com/7096407.html

[22] Sun, “OpenSPARC T2 system-on-chip (SOC) microarchitec-
ture specification,” May 2008.

[23] AMD, “BIOS and kernel developer’s guide for AMD NPT
family 0fh processors,” http://support.amd.com/us/Processor
TechDocs/32559.pdf, Jul. 2007.

[24] AMD, Inc., “BIOS and Kernel Developer’s Guide (BKDG)
for AMD Family 11h Processors, rev 3.00,” Jun. 2008.

[25] Sun Microsystems, “memscrub.c source code,
http://src.opensolaris.org/source/xref/onnv/onnv-gate/usr/src/
uts/i86pc/os/memscrub.c.”

[26] M. Gorman, Understanding the Linux Virtual Memory Man-
ager. Prentice Hall, 2004.

