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The idea of a capability which acts like a ticket au- 
thorizing the use of some object was developed by 
Dennis and Van Horn [15] as a generalization of ad- 
dressing and protection schemes such as the codewords 
of the Rice computer [28], the descriptors of the Bur- 
roughs machines [6, 7], and the segment and page tables 
in computers such as the GE-645 and IBM 360/67 [1, 14]. 
Dennis and Van Horn extended the earlier schemes to 
include not just memory but all systems objects--mem- 
ory, processes, input/output devices, and so on- -and  to 
allow the explicit manipulation of access control by non- 
system programs. The idea is that a capability is a special 
kind of address for an object, that these addresses can be 
created only by the system, and that, in order to use any 
object, one must address it via one of these addresses. 

The use of capabilities as a protection mechanism 
has been the subject of considerable interest [24, 29, 32, 
43]. It is assumed that the reader is familiar with the use 
of capabilities for protection; a different aspect of capa- 
bilities is developed here. 

It is argued below that there is an advantage in using 
capabilities as a basic component of the address of every 
object (except for objects associated with the processor 
such as its registers). In order to accomplish this, user 
programs must be able to store capabilities freely into 
various permanent user data structures (subject, of 
course, to some scheme for preserving the integrity of the 
representation of capabilities). Not all schemes which 
use capabilities actually allow capabilities to be used as 
permanent addresses in this way. For example, the 
original Dennis and Van Horn scheme did not because 
it insisted that capabilities be stored only in C-lists asso- 
ciated with computations. 

Context-Independent Addresses 

The advantage of a capability used as an address is 
that its interpretation is context independent. It provides 
an absolute address for an object. This fact is more im- 
portant than it may at first appear. 

Before the use of address relocation--such as base 
and limit registers, paging, and segmentation--jobs were 
allocated fixed areas of physical memory. Addresses 
within the jobs were relocated at load time, and a job 
was not moved once it had started running. The lack of 
the ability to dynamically relocate resulted in under- 
utilized computers. To avoid this underutilization, ad- 
dress relocation was introduced. But in doing so, a new 
problem was also introduced. Consider two jobs which 
need to interact with each other. In a system without 
relocation, jobs share an address space and can be al- 
lowed to interact freely, sharing data structures and ad- 
dresses as easily as if they were a single job. With address 
relocation, however, the meaning of an address becomes 
context dependent; each job has its own address space, 
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or perhaps several. This fact is generally interpreted as 
an advantage: base and limit registers, paging, and seg- 
mentation, by virtue of their address relocation, allow 
users to be isolated from each other, thus providing pro- 
tection of one job from another. On the other hand, the 
sharing of addresses becomes more difficult, and this side 
effect is generally ignored. This effect is particulaly 
ironic for those systems which stress their usefulness for 
cooperating users who want to work together, sharing 
programs and data. 

Although a capability functions as an absolute ad- 
dress, the use of capabilities does not prevent a system 
from using address relocation. A capability is an abso- 
lute address for a virtual object; the system is free to 
relocate the virtual object so long as it maintains the 
correspondence between the object and its capabilities. 

Fig. 1. Segment addresses. 
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The Problem of Shared Segment References 

Various addressing schemes making use of segment 
tables have been implemented in present day systems. 
Although the inadequacies of these schemes when deal- 
ing with shared segment addresses may be apparent  to 
users of  the systems, the inadequacies have not (with 
rare exception) been explained in sysfem descriptions, 
nor does there exist a systematic comparison of the 
problems which arise with each of the schemes. 

As an example of the problems encountered in these 
systems, consider a particular structure, a set of inter- 
acting subprograms. Figure 1 shows a process which has 
three segments: a data segment, a main program, and a 
subroutine. The segment table translates integer segment 
addresses into references to the appropriate segments 
and specifies the permitted types of  access. R means 
reading is allowed, W means writing is allowed, and E 
means executing is allowed. The entries in the segment 
table can be thought of  as descriptors, capabilities, code- 
words, or pointers; for our purposes these are the same. 
The main p rogram in Figure 1 contains two segment 
references, a call on the subroutine, coded as CALL 1, and 
an access of  the data segment, coded as ACCESS 2. The 
PC register associated with the process contains the seg- 
ment number of  the segment which the program counter 
addresses. In an actual system, the location of a word 
within a segment is also important.  For simplicity, the 
word number components  of addresses are omitted. 

Figure 2 shows the case in which the program and 
the segment references which it contains are shared. As- 
sume for the moment  that the correspondence between 
integers and segments is constructed independently for 
each process. Then, as in the figure, a segment may be 
referred to by different integers in different processes. 
How can the segment references in the shared main pro- 
gram be coded? For process 1, the references should be 
coded CALL 1 and ACCESS 2. For process 2, however, they 
should be coded CALL 0 and ACCESS 1. Four different 
solutions to this problem of shared segment references 
are presented below. 
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Fig. 2. Shared segment addresses. 
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Fig. 3. Uniform address solution. 
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Fig. 4. Indirect evaluation solution. 
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Uniform Address Solution 
The uniform address solution is shown in Figure 3. 

This solution requires that a shared integer segment ad- 
dress be interpreted in a functionally equivalent manner 
for all processes sharing the address. A shared address 
is said to receive a functionally equivalent interpretation 
for a set of processes if the objects referred to by the 
address are used in the same way by each process. For  
example, in Figure 3, the segment address 2 refers to the 
data segment used by the process making the reference, 
while the segment address 1 refers to the segment con- 
taining the subroutine called by the main program in a 
certain instruction. Note that a functionally equivalent 
interpretation of a shared address sometimes causes the 
same object to be referenced by all processes and some- 
times causes a different object to be referenced by each 
process. 

The uniform address solution requires that the func- 
tions of the various shared integer segment addresses be 
defined centrally so that there will be no conflicts. This 
requirement rules out the possibility of a single process 
executing several independently constructed, shared 
subprograms. This is ruled out because each independ- 
ent constructor would be free to choose a function for a 
particular index and the chosen functions would usually 
conflict. This is a rather serious drawback if one desires 
a programming environment in which a user is able to 
build on the work of others in a general way [13]. 

Generality notwithstanding, the uniform address 
solution is used successfully by Burroughs. The Bur- 
roughs systems require a user to compile all his program 
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at once (except for certain standard system-wide sub- 
routines). Thus the compiler can allocate the integer 
segment addresses at compile time and embed them in 
the code. The Program Reference Table of the B5700 
functions exactly as the segment table in Figure 3 does 
[6, 7, 351. 

Indirect Evaluation Solution 
The indirect evaluation solution is shown in Figure 4. 

A shared integer segment address is treated as an index 
of a position within a linkage segment and the linkage 
segment contains segment table indexes. One linkage 
segment per independently-created subprogram per 
process is assumed; the linkage segment is created the 
first time a subprogram is executed by a process. (A 
slightly different scheme can be obtained if a new linkage 
segment is created each time the subprogram is acti- 
vated.) Thus, when process 1 executes the code for 
ACCESS 2, word 2 of the linkage segment for process 1 for 
the main program is fetched. This word contains 0, 
which is then taken to be the segment table index of the 
segment to be accessed, in this case the data segment for 
process 1. Some processor register must be used to 
remember the address of the linkage segment. Base 
registers are indicated for this purpose in Figure 4. It is 
assumed that both processes are executing the main 
program, and thus each base register contains the seg- 
ment table index of the linkage segment for the main 
program. 

Calling independently created subprograms is more 
complicated with indirect evaluation of segment refer- 
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ences since the base register contents must be changed. 
Figure 4 assumes that call instructions contain the ad- 
dress of  the linkage segment of the subroutine to be 
called and that word 0 of this linkage segment contains 
the segment table index of the segment containing the 
code for the subprogram. Thus, when process 1 executes 
CALL 1, Word 1 of the linkage segment for process I for 
the main program is fetched. This word contains 4, 
which is then placed in the base register. Word 0 of  the 
linkage segment indicated by the new contents of the 
base register is then fetched. This word contains 2, 
which is then placed in PC. 

The point of linkage segments is to create independ- 
ently allocated sets of  integer segment addresses in order 
to overcome the main drawback of the uniform address 
solution. Thus there must be at least one linkage segment 
per independent allocation of addresses. 

When the indirect evaluation solution is used, seg- 
ment addresses passed from one subprogram to another 
as parameters  are treated differently than addresses em- 
bedded in shared programs. Segment table indexes are 
passed rather than linkage segment indexes; this is be- 
cause the segment table is process-wide, whereas the 
linkage segments are not. 

The indirect evaluation solution has several disad- 
vantages. It  requires extra space to hold the indirection 
information, extra overhead to set up the indirection 
information, and extra memory  references to obtain the 
indirection information. Most important,  however, the 
solution is inadequate. It provides one kind of address 
space for addresses which are to be used by many pro- 
grams but one process; it provides another kind of ad- 
dress space for addresses which are to be used by many 
processes but one program. It makes no provision for an 
address space for addresses which are to be used by 
many processes and many programs. Such addresses 
might be needed, for example, in a multisegment data 
structure which existed independently of any program 
or process. 

Nevertheless, the indirect evaluation solution has 
been used successfully for Multics [3, 11, 14, 36]. The 
actual Multics scheme differs in details from what has 
been described, but it is the same in concept. 

Multiple Segment Table Solution 
The multiple segment table solution is shown in 

Figure 5. This solution can be viewed as a modification 
of the indirect evaluation solution in which segment 
table indexes in the linkage segments are replaced by 
capabilities and the linkage segments are renamed seg- 
ment tables. The base register and the program counter 
which contained segment table indexes are modified to 
contain capabilities also. Thus, when process I executes 
the code for ACCESS 2, the evaluation of the integer seg- 
ment address works in the same way as for Figure 3; the 
difference is that the segment table is now private to a 
particular program as well as to a particular process. 
Figure 5 assumes that the subroutine instruction con- 
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Fig. 5. Multiple segment table solution. 
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tains the address of the segment table for the called pro- 
gram, and that word 0 in the segment table points to the 
segment containing the called program. Thus, when 
process 1 executes the code for CALL 1, word 1 of  the seg- 
ment table for process 1 for the main program is loaded 
into the base register. Word 0 of this new segment table 
is then fetched and placed in PC. 

The main disadvantage of the multiple segment table 
solution is that it does away with the per-process seg- 
ment table and thus with the only addresses which could 
be shared among several programs being executed by 
the same process. Thus this solution compounds  the 
problem of shared segment references. 

The difference becomes apparent  if one considers 
parameter passing during a subroutine call. For  exam- 
ple, in the scheme of Evans and LeClerc [18, 33], which 
uses a multiple-segment-table-type solution, entries are 
made in the segment table for a subroutine each time the 
subroutine is called; these entries are capabilities for the 
various parameters passed to the subroutine. Such a 
scheme either disallows recursive subroutines or else 
requires a new version of the segment table for each 
level of recursion. Another solution is to store the capa- 
bilities for the parameters in a stack, much as is already 
done on the Burroughs machines. (The Evans and 
LeClerc scheme also allows a segment table to be asso- 
ciated with a data structure. I f  one reads into their 
scheme a mechanism for varying the contents of  the seg- 
ment tables associated with data structures dynamically 
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Fig. 6. Capability addressing solution. 
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containing the subroutine to be called. When the CALL is 
executed, this capability is placed in PC. 

In comparing Figure 6 with Figure 3, a distinction is 
made between processor registers and the segment 
tables. This distinction is not related to implementation 
technology but rather to allocation. The allocation of 
processor registers is under control of the person or com- 
piler generating even the smallest section of code; one is 
always free to redefine the use of these registers by saving 
the contents and later restoring them. Thus there is no 
requirement for a central mechanism to define the use of 
the registers, and the main problem with the uniform 
address solution is avoided. 

Figure 6 illustrates both types of functionally equiva- 
lent interpretations for segment addresses. The access to 
the data segment must refer to a different segment for 
each process and thus specifies indirect evaluation 
through a processor register. The reference to the sub- 
routine refers to the same segment for each process and 
is thus embedded directly in the program. (Note that 
this is not meant to imply that references to called pro- 
grams must always be bound in advance, but that for 
cases in which advance binding is appropriate,  it can be 
handled that way.) 

and under program control, then one would classify it as 
using a capability addressing solution.) 

One can consider the display registers of the B6700 
to define segment tables and view the B6700 as using the 
multiple segment table solution [8, 35]. 

The protection system suggested by Needham [34] 
uses multiple segment table addressing in which there 
are four simultaneously available segment tables: one 
for capabilities which are global to the process; one for 
capabilities associated with the current program and 
shared by all processes using the program; one for capa- 
bilities associated with the current program and private 
to the process; and one for the arguments for this activa- 
tion of the program. As Needham points out in his 
paper, there are still difficulties with pointers from one 
segment to another which appear in some shared data 
structures. 

Capability Addressing Solution 
The capability addressing solution [21] is shown in 

Figure 6. In this scheme capabilities may be used wher- 
ever the integer addresses were used previously. In par- 
ticular, capabilities may be stored in segments and in the 
registers of the processor. (There must, of course, be 
some scheme for preserving the integrity of the repre- 
sentation of capabilities. Two schemes are discussed 
later.) This scheme does away with segment tables and 
with the mandatory indirect evaluation of shared ad- 
dresses. In Figure 6, when ACCESS 0 is executed, the 0 
means the segment indicated by register 0 and is thus 
evaluated indirectly. The subroutine call instruction is 
assumed to be followed by a capability for the segment 

Other Solutions 
The solutions which have been compared are not the 

only solutions to the problem of shared segment refer- 
ences. They are the ones which have been most thor- 
oughly developed and which appear to have the most 
promise. 

Another solution is to address each segment with a 
unique integer which is assigned at the time the segment 
is created, never changed, and not reused even after the 
segment has disappeared from the system. Call this the 
unique integer solution. As is explained below in the sec- 
tion on implementation, a similar unique integer is the 
major component  in a capability. In fact, aside from the 
access control bits which determine whether or not read- 
ing, etc., is allowed, the only difference is that in the 
capability addressing solution, the integers are known 
to refer to segments which may be accessed, while in the 
unique integer solution, accessing rights must be deter- 
mined separately. 

Comparison of Relative and Abolute Addresses 

The rather lengthy example just completed is a com- 
paratively easy one for the addressing schemes which 
are based on segment tables. Should we have attempted 
to construct a shared time-varying multisegment data 
structure containing internal cross-references and having 
an existence independent of any particular program or 
process, we could have done so only by using absolute 
addresses. 

The reason for this is best understood in terms of an 
example. In Multics, two users can set up private indi- 
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rection tables to translate from segment numbers con- 
tained in a shared data structure to segment table in- 
dexes for arbitrary segments. Linkage segments are, of 
course, an instance of such an indirection table for pro- 
grams. If  these two users want the segment numbers 
contained in the data structure to have an absolute inter- 
pretation, they need only arrange the indirection table 
properly. But the problem remains as to how the shared 
data structure can specify how the indirection table 
should be arranged. This specification requires some 
way to refer to a segment in a context-independent man- 
ner; i.e. it requires absolute addresses. 

Multics, of course, provides what is, in effect, a sec- 
ond way of addressing all segments in order to handle 
this case, namely the full path names of the file system. 
(A different system might not provide this second way 
of addressing. There is no inherent reason to insist that 
every segment is named by the file system or that protec- 
tion be provided on a per-segment basis in terms of read, 
write, execute, and append. The reader who doubts this 
is referred to systems which allow users to define new 
types of  objects, perhaps consisting of many segments 
and perhaps with very different modes of access being 
relevant [23, 29, 32, 42, 46].) 

In Multics, the use of the file system's full path name 
as an absolute address may be quite awkward because 
of its variable length. Furthermore,  if the name is em- 
bedded in a data structure rather than a program, it will 
be necessary either to convert the name into a segment 
number each time it is used or else to use some ad hoc 
indirect evaluation. One wonders two things: What frac- 
tion of the time that a file system name is used would a 
simple absolute address have sufficed? and How much 
programmer time is spent minimizing the occurrence of 
absolute references in order to create programs which 
run efficiently? I f  one could measure both the direct cost 
of the linkage mechanisms and the indirect cost of creat- 
ing programs which utilize these mechanisms in a rea- 
sonable way, it might turn out that one substantial 
source of inefficiency in the modern mult iprogramming 
systems which rely on shared objects is that they have 
eliminated the old-fashioned idea of an absolute address 
for such objects. 

Hardware Implementation 

The problems of implementing capability addressing 
are now examined. There are several computers in which 
every explicit memory access uses an address in the form 
of a segment capability and word number pair and 
which allow capabilities to be directly manipulated by 
user programs in the traditional ways that addresses 
are used. One is the Chicago Magic Number  Computer  
developed by the Institute for Computer  Research at the 
University of Chicago [19, 20, 21, 41, 47]. This system 
was never completed. A second computer is the System 
250 built by the Plessey Company in England [9, 10, 16, 
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17, 25, 26]. The Plessey system is available commercially. 
A number of systems use capabilities as a protection 

mechanism at the operating system level but run on con- 
ventional machines, including the CAL-TSS system [30, 
42], the Bcc system [31], the sue system [40], and the 
HYDRA system [46]. Since these systems interpret capa- 
bilities as addresses in software, they are somewhat less 
relevant to the present discussion. 

Tagged machines such as the Burroughs B6700, the 
Rice computers [22, 23, 28], and Iliffe's Basic Machine 
[27] have the potential of implementing what we have 
described above as capability addressing. However, 
there appear to be no operating systems yet for these 
machines which allow capabilities to appear as addresses 
in arbitrary ways within retained data structures. Thus 
these systems are also somewhat less relevant to the 
present discussion. 

Based on experience with these various implementa- 
tions a number of implementation considerations have 
been clarified. 

Integrity of Capabilities 
Because of the access control properties of capabili- 

ties, it is important  that no ordinary program can manu- 
facture or modify the bit pattern with which a capability 
is represented. Two ways are known for maintaining the 
integrity of the representation of capabilities: the tagged 
approach and the partition approach. 

The tagged approach used on the Burroughs B6700, 
the Rice computers, and the Basic Machine adds one or 
more tag bits to each word in a segment and to each proc- 
essor register. This tag is used to specify whether the 
contents of the word or register are a capability or not. 
We refer to a piece of information which is not a capa- 
bility as being data; in this sense, data includes pro- 
grams. The testing and setting of the tag bits is done by 
the processor each time an access is made, and uses cer- 
tain simple rules: when a word is copied, the copy is 
given the same tag as the original; arithmetic and logical 
instructions must be applied to words tagged as data 
and always produce a data tag on the result; addressing 
always checks that the segment address is tagged as a 
capability; and so on. 

The partition approach is used on the Chicago Magic 
Number  Machine and on the Plessey System 250. In the 
partition approach, each segment is designated at crea- 
tion as containing either capabilities or data. In addi- 
tion, there is one set of processor registers for data and 
one for capabilities. The processor instruction set satis- 
fies rules analogous to those above: data can be copied 
only into data segments and registers; capabilities can be 
copied only into capability segments and registers; and 
SO o n .  

The tagged approach and the partition approach are 
equivalent in the sense that a structure represented with 
one approach can be translated into an equivalent struc- 
ture in the other approach. Which approach is better? 
The partition approach has several advantages. It  is 
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simple for capabilities and data words to be different 
lengths. This may be important,  since capabilities tend 
to be b ig - -a t  least 64 bits long and perhaps longer. (In a 
bit-oriented machine like the B1700 [44, 451 this argu- 
ment for the partition approach may vanish, however.) 
The partition approach allows capabilities to be located 
by the operating system more easily since they are in 
known places. This is important  for both the Chicago 
Magic Number  Computer  and the Plessey System 250 
since, in both, the operating system modifies the repre- 
sentation of capabilities under certain conditions. An 
implementation is described below, however, in which 
such modifications are not required. Another advantage 
of the partition approach is that tag bits are not required 
in memory.  A disadvantage of the partition approach is 
due to the fact that most objects require both data and 
capabilities and thus require two segments with the par- 
tition approach instead of the one required by the tagged 
approach. Extra capabilities are required to pair the seg- 
ments as is usually desired. Various operations must 
then deal with two segments and become more complex. 
Extra secondary storage accesses may be required to 
move the pair of segments in and out of memory.  To use 
Saltzer's distinction [37], the advantages of the partition 
approach are all technological, while some of its disad- 
vantages are intrinsic. Thus one might expect the tagged 
approach to dominate in the long run. 

Address Translation 

From the user's point of view, a capability is simply 
an address for a virtual object and is specified whenever 
the object is to be accessed. From the implementation 
point of view, a capability is a bit pattern which specifies 
to the address translation logic where the physical object 
which currently represents the virtual object is located. 
This discussion is restricted to capabilities for segments, 
although analogous statements apply to other objects. 
Access type checking, such as checking whether or not a 
store operation is allowed, is well understood and will be 
ignored here. Furthermore,  it is assumed that segments 
are not paged; paging may be introduced in an obvious 
way. Thus the situation is as follows. A user wishes to 
access some word in some segment. He writes an instruc- 
tion which specifies a capability for the segment to be 
accessed and an integer which identifies the word within 
the segment. What  does the hardware do when such an 
instruction is executed? 

In the scheme used on the Chicago Magic Number  
Computer,  there are two representations of segment 
capabilities, known as in-form and out-form. These 
two forms are distinguished by a bit in the capability 
representation. An in-form capability is used only for 
segments which are in primary memory.  It  contains the 
absolute address of the origin of the segment in primary 
memory and the length of the segment. In-form capabil- 
ities are never allowed to exist on secondary storage; a 
capability is converted to out-form before being moved 
to secondary storage. Out-form capabilities contain the 

secondary storage address of  the first record of the seg- 
ment and a unique sequence number which serves to 
invalidate capabilities for segments which no longer 
exist. An attempt to access a segment using an in-form 
capability causes the hardware to compare the requested 
word's offset wi ththe length of the segment and, if there 
is no conflict, to calculate the address of the word of 
primary memory to be accessed by adding the offset to 
the address of the origin of the segment. An attempt to 
access a segment using an out-form capability results in a 
trap to the system. 

The disadvantage of the approach taken on the Chi- 
cago Magic Number  Computer  is that the operating 
system must frequently convert back and forth between 
in-form and out-form representations, and must occa- 
sionally update the length and address fields in all of the 
in-form capabilities for some segment. Various schemes 
are used to minimize this overhead. In retrospect, it 
appears that the overhead is still substantial. 

The Plessey System 250 also uses a scheme of in-form 
and out-form capabilities. The scheme has several im- 
provements over the Chicago Magic Number  Computer,  
especially in the representation of in-form capabilities. 
In-form capabilities are evaluated indirectly. There is an 
indirection table stored in primary memory at a fixed 
location. Each segment for which capabilities are pres- 
ently in primary memory has an entry in the indirection 
table. The in-form capability for an object contains the 
index of the segment's entry in the indirection table. The 
entry in the indirection table contains a bit which says 
whether or not the segment is in primary memory, and 
contains the segment's secondary storage address and 
length. If  the segment is in primary memory, the entry 
also contains the segment's primary memory address. 
The indirection table entry is not fetched on every access 
to a segment; it is instead fetched whenever a capability 
is loaded into a processor register. 

Using this scheme, the length and primary memory 
address fields for a segment appear only in one p lace- -  
the segment's entry in the indirection table (assuming no 
process which uses the segment is running). This sub- 
stantially simplifies updating this information. Further- 
more, in-form capabilities appear only in primary mem- 
ory, and out-form capabilities appear only in secondary 
storage. This convention makes it simple for the system 
to decide when to convert back and forth between repre- 
sentations. There may still be a substantial overhead in 
such conversion, however. 

The following hardware implementation for address 
translation is suggested for future implementers of capa- 
bility-based addressing. It would have been beyond the 
scope of the hardware available for the Chicago Magic 
Number  Computer  but should be reasonable for a com- 
puter being designed today. As suggested by Dennis and 
Van Horn, there is a unique code associated with each 
segment. The unique code is assigned at the time the 
segment is created and does not change during the life 
of the segment. It is not reused, even after the segment 
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disappears from the system. There is only one represen- 
tation of a capability, and it contains the segment's 
unique code. 

The hardware must be able to find the base address 
and size for a segment in primary memory once it 
knows the unique code for the segment. It does this by 
consulting a hash table maintained in primary memory 
by the operating system which contains an entry for 
every segment residing in primary memory.  There is a 
single hash table for all users. For each unique code 
entered in the hash table there is a presence bit which 
'tells whether or not thesegment  is in primary memory;  
additional fields indicate the segment's size and the 
secondary storage address of its origin. Once an entry 
has been put in the hash table, the entry remains, even if 
the segment is written back to secondary storage. Entries 
age out of the hash table slowly, much as the active seg- 
ment table entries are handled in Multics. The reason 
for keeping entries in the table after the segment has left 
primary memory is to speed up bringing the segment in 
again, should it be needed. 

When a segment is accessed and the hardware looks 
up its unique code, there are three possible results. The 
segment may be in primary memory,  in which case the 
appropriate word is accessed. The segment may be in the 
hash table but not present in pr imary memory,  in which 
case the hardware causes a type A exception and reports 
the address of the hash table entry. Finally, the segment 
may not be in the hash table, in which case the hardware 
causes a type B exception and reports the unique code. 

In the case of  a type A exception, the operating sys- 
tem initiates a read using the secondary storage address 
and size obtained from the hash table entry and blocks 
the process which was making the access. When the 
segment has been read in, the hash table entry is up- 
dated and the process is allowed to continue. In the 
case of a type B exception, the operating system first 
obtains the segment's size and secondary storage ad- 
dress and places them in a newly allocated hash table 
entry and then proceeds as with a type A exception. 
Obtaining a segment's size and secondary storage ad- 
dress, given its unique code, is done by consulting a 
data structure on secondary storage which provides 
the mapping between the unique code and the size 
and secondary storage address for all segments. Such a 
data structure is organized as a modified hash table so 
as to minimize the expected number  of secondary stor- 
age accesses required to find an entry. 

The final feature of the suggested implementation is 
a small associative memory  which remembers the sizes 
and primary memory addresses for the unique codes of 
the most recently accessed segments. Experience with 
Multics indicates that even a small associative memory  
can be quite effective [38]. 

Paging 
Experience with Burroughs machines indicates that 

when segments are allocated in terms of "natura l"  units 
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for the problem being solved (and the compiler auto- 
matically breaks up large arrays), segment sizes are on 
the average smaller than typical present-day page sizes 
[2]. On Multics, where the cost of an additional segment 
is high in terms of additional linkage operations and 
additional system bookkeeping information, a typical 
user makes segments larger by combining several differ- 
ent objects in a single segment, thus making his pro- 
gram run more efficiently. This practice should be 
discouraged, however, since neither the protection 
mechanism nor the memory management  mechanism 
allows objects thus combined to be treated individually. 

Experience with the Plessey System 250 indicates 
segment sizes more like those of Burroughs'  machines 
than like those of Multics. Thus a paged address trans- 
lation scheme may perform worse than a nonpaged 
scheme. M. O'Halloran,  one of the designers of  the 
Plessey System 250, suggests that an inverse concept of  
paging--i .e,  many segments per page rather than many 
pages per segment-- is  needed to cope with so many 
very small segments. 

Instruction Sets 
For capability-based addressing, capabilities must be 

able to be copied around freely. The capab?lity functions 
as a basic component  in addresses for every object be- 
yond the walls of the processor. The user must be able 
to do anything with a capability that he would do with 
an ordinary address on an ordinary machine. Addresses 
containing capabilities may be used for parameter  pass- 
ing, subroutine returns, elaborate data structures, and 
so on. Furthermore,  every instruction which addresses a 
word, input /output  device, etc., must implicitly or ex- 
plicitly specify a capability for the object to be accessed. 

An en t e r  ins t ruc t ion  is needed to call a subroutine 
and simultaneously change the protection domain. The 
Chicago Magic Number  Computer  demonstrated that 
an enter instruction need be no less efficient than an 
ordinary call instruction. A new type of access for seg- 
ments is added, called en t e r  access .  Enter access is 
weaker than read, write, or execute access and allows 
only the transfer of control to a fixed entry point, say 
word zero, using the enter instruction. The enter instruc- 
tion works like the call used with Figure 6, except that 
the enter changes the access bits in the capability which 
is placed in PC to allow reading and executing the pro- 
gram segment. By giving the calling program a capabil- 
ity for the called program's  segment which specifies 
only enter access, the called program, but not the calling 
program, can obtain the capabilities embedded in the 
called program's  segment. 

The Stack ° 

When a program is organized into subroutines, each 
subroutine may need a temporary storage area for 
parameters,  returns, and local storage. Such storage is 
often implemented as a stack frame allocated on a com- 
mon stack each time there is a subroutine call. I f  the 
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subroutines run in different protection domains, the 
stack frames cannot be allocated in a single segment. 
This is because a subroutine might keep a capability for 
its stack frame even after it returns control to its caller. 
It could then use this capability later to interfere with 
other subroutines to which the stack frame is allocated. 
The problem could be avoided if there was an efficient 
mechanism for revoking capabilities. 

Assuming revocation is not possible, one solution is 
to allocate each stack frame in a newly-created segment 
which will be discarded when the stack frame is no 
longer needed. Such a scheme adds a substantial over- 
head to subroutine calling and returning. A better solu- 
tion is a hardware-managed stack which is not treated 
as a segment for which capabilities exist, but as a stack 
of processor registers. The Burroughs B6700 has such a 
stack, although the implementation relies partly on sys- 
tem compilers and is complex because of its ability to 
cope with Algol naming. Schroeder's thesis is also rele- 
vant [39]. The design of the Chicago Magic Number  
Computer  is quite weak in this respect. 

I f  the stack is arranged so that the temporary stor- 
age of the calling routine is unavailable to the called 
routine, so that the called program cannot alter the re- 
turn location, and so that parameters can be passed in 
an orderly way, then the simple enter instruction de- 
scribed above can be used for passing control to a more 
privileged program, to a less privileged program, or 
between mutually suspicious programs. 

The Own Variable Problem 
In addition to temporary storage allocated for a sub- 

routine each time the subroutine is called, a rout ine  may 
need storage which is allocated when a process first 
executes the routine and which is retained from call to 
call of the subroutine by that process. In Algol, such 
storage is provided by o w n  variables. For example, a 
pseudo random number generator needs an own varia- 
ble to remember where it is in its pseudo random se- 
quence of numbers. Such information could be retained 
by the caller and passed as a parameter, but such a 
solution violates programming generality [13]. 

Linkage segments, in addition to providing for the 
indirect evaluation of segment addresses, provide a sim- 
ple implementation for own variables. It would be un- 
satisfactory to remove the need for the indirection 
information in a linkage segment only to find that link- 
age segments remain so as to implement own variables. 

The Algol concept of own variables is not fully gen- 
eral, however. It is likely that languages which provide 
more control over retention, such as Berry's Oregano 
[4], will prevail in the long run. Should this be the case, 
the implementation of own variables based on linkage 
segments will be too specialized, and one would expect 
to provide a stack mechanism which allows for retention 
of stack frames such as the scheme suggested by Bob- 
row and Wegbreit [5]. 

Conclusion 

Capability-based addressing provides an efficient 
type of absolute address for an object. The use of  such 
absolute addresses can simplify programming conven- 
tions when a general-purpose scheme for shared ad- 
dresses is required. Recent advances eliminate the need 
for the modification of the representation of capabilities 
by the operating system and suggest how to solve the 
own variable problem in a general way. These advances 
eliminate the major implementation problems of pre- 
viously designed systems. A computer  using capability- 
based addressing may now be substantially superior to 
present systems on the basis of protection, simplicity of 
programming conventions, and efficient implementation. 
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Virtual machine systems have been implemented on a 
limited number of third generation computer systems, e.g. 
CP-67 on the IBM 360/67. From previous empirical 
studies, it is known that certain third generation computer 
systems, e.g. the DEC PDP-10, cannot support a virtual 
machine system. In this paper, model of a third- 
generation-like computer system is developed. Formal 
techniques are used to derive precise sufficient conditions 
to test whether such an architecture can support virtual 
machines. 
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