
The MungiSingle-Address-Space Operating SystemGernot Heiser, Kevin Elphinstone, Jerry Vochteloo, Stephen RussellDepartment of Computer SystemsSchool of Computer Science and EngineeringThe University of New South Wales, Sydney 2052, AustraliaPhone: +61-2-9385-5156Fax: +61-2-9385-5995E-mail: fgernot,kevine,jerry,smrg@cse.unsw.edu.auWWW: http://www.cse.unsw.edu.au/~disyJochen LiedtkeIBM T. J. Watson Research Center30 Saw Mill River Road, Hawthorne, NY 10532, USAE-mail: jochen@us.ibm.comAppeared inSoftware: Practice & Experience, 18(9), 25 July 1998

AbstractSingle-address-space operating systems (SASOS) are an attractivemodel for making the best use of the wide address space provided by thelatest generations of microprocessors. SASOS remove the address spaceboundaries which make data sharing between processes di�cult and ex-pensive in traditional operating systems. They o�er the potential of signif-icant performance advantages for applications where sharing is important,such as object-oriented databases or persistent programming systems.We have built the Mungi system to demonstrate that a SASOS cano�er these performance advantages without resorting to special hardware.Mungi is a very \pure" SASOS, featuring an unintrusive protection modelbased on sparse capabilities, a fast protected procedure call mechanism,and uses shared memory as the exclusive inter-process communicationmechanism, as well as for I/O. The simplicity of our model makes it easyto implement it e�ciently on conventional architectures.Our implementation of Mungi for the MIPS R4600 64-bit micropro-cessor is presented, which is based on our port of the L4 microkernel.Mungi is shown to outperform, in some instances by more than an orderof magnitude, two UNIX operating systems, Irix and Linux, in severalimportant operations, such as task creation and inter-process communi-cations, and on the OO1 object-oriented database benchmark. As well,we describe how our approach to key issues in SASOS design provides bet-ter performance than other systems, such as Opal. Our experience showsthat the SASOS concept is viable, and that a well-designed microkernel isan excellent base on which to build high-performance operating systems.Keywords: persistent systems, distributed shared memory, capabilities,object invocation, performance

2

MotivationFor many years, the number of bits available for addressing memory consti-tuted one of the most serious restrictions imposed on programmers. While theintroduction of virtual memory made it easier for programmers to deal with thelimited amount of physical memory available, even virtual address spaces weretoo small to address all of the data needed by a program.As a result, current operating systems provide a large number of di�erentaddress spaces. In a time-shared system, each process has its own addressspace containing the memory objects on which the program can operate directly.However, a large amount of the data which programs need to use is outside thisaddress space. This especially includes all persistent data; i.e., data whoselifetime is independent of any particular process, and which is generally kept in�les.Each �le is an address space of its own. A data item within a �le is addressedby its position relative to the beginning of the �le. However, such an address isdi�erent from a normal memory address as it cannot be used by an instructionto access the data. Hence, the system has at least two di�erent addressingmechanisms: Data in virtual memory can be named and accessed simply byissuing its virtual memory address, while data in persistent memory is identi�edby a �le name and an o�set, and complex operations are required to make thedata accessible.These non-uniform access mechanisms also signi�cantly complicate the long-term storage and sharing of some types of data. Imagine a program whichconstructs a dynamic data structure, such as a binary tree. The data structureis composed of a large number of memory objects which have been dynamicallyallocated, and the di�erent sub-objects are connected with pointers. Thesepointers are virtual memory addresses whose values are not, in general, underthe control of the application program, and depend on memory allocation callsperformed previously by the process.Now suppose the program tries to save the whole data structure in persistentmemory so that it can be retrieved later. This creates a serious problem: Thepointer values have meaning only within their original address space. Whenmoved into a di�erent address space, they become meaningless bit patterns. Ifthe �le is read back by a later execution of even the same program, dynamicallyallocated memory objects end up at di�erent addresses, and the pointers areinvalid. Similar problems can occur if programs attempt to pass data structuresvia an inter-process communication channel. This inability to share or storepointers, unlike other data types, has been a fundamental limitation of operatingsystems for many decades.Two traditional strategies exist for dealing with these problems. One is toconvert pointers into position independent references for storage or communica-tion, or convert into a format which contains no pointers. This process is called
attening, and must generally be done by the programmer. The alternative isto store pointers in a portable form, then translate them automatically whenthey are used, a process called pointer swizzling [1, 2]. Pointer swizzling is only3

possible if the system is able to detect all pointers. This imposes signi�cant re-strictions on pointer use, which are generally incompatible with languages likeC. Careful use of shared memory also o�ers a partial solution. Complex datastructures can be shared, but only if the shared memory region resides at thesame virtual address for all participating processes, both currently and in thefuture. Reaching agreement on the addresses to share is not always possible ifmore than a few processes are involved. Further di�culties result from the factthat all objects in the shared address range will have the same protection state,and it is di�cult or impossible to allow sharing of just parts of the memory.While these approaches are of some help, the need to move data betweenmultiple address spaces results in programs that are slower, more complex, andless able to cooperate e�ectively. These problems could be avoided if all datawere put into the same address space. It has been pointed out long ago [3]that there are signi�cant bene�ts to be gained by a uniform treatment of alldata, no matter how long its lifetime. This is generally referred to as orthogonalpersistence.Large address spacesAn address space that is able to accommodate all persistent objects and to alloweasy sharing must be large, much larger than the 32-bit addresses available untilrecently. This was recognised in IBM's System/38 [4] (now AS/400) and Mon-ads [5], which implemented a large shared virtual address space. These systemso�ered attractive features such as a single-level store, object-based protection,and, in Monads' case, transparent distribution. However, they rely on the useof custom hardware in order to emulate a large address-space on the processorarchitectures available at the time.The advent of 64-bit computer architectures, such as the HP-PA, the MIPSR4000, and the DEC Alpha, has now made the single address space approachfeasible [6{8]. A 64-bit address space is big enough to allow the uni�cation ofall data on all nodes of a distributed system of thousands of machines. In sucha single-address-space operating system (SASOS) there is a single, system widename for each object | its virtual memory address. Sharing in such a
at,single address space is trivial, as knowledge of the address is all that is requiredfor accessing shared data. By its very nature, the system guarantees that alldata is sharable, independent on whether or not sharing was intended at thetime the data was created.The large single address space can also incorporate all persistent data. In aSASOS the address space persists throughout the life of the system, and henceobjects allocated in the address space persist as well. As a consequence, aSASOS needs no �le system, and non-volatile (disk) store is nothing more thanbacking store for virtual memory paging.Eliminating the need for a �le system does more than just simplify datastorage and application programs. Redundant data movements inherent in �lesystem are avoided, as data read from disk is deposited directly where it is to be4

accessed by user code. Soltis [9] also points out that the process independence ofvirtual-to-physical address mappings in a single address space plays a signi�cantrole in keeping context switching costs low. It has furthermore been noted [10]that the simpli�ed model signi�cantly reduces the complexity of the operatingsystem, and leads to improved performance (small is beautiful!) In a distributedsystem, the single address space incorporating all nodes makes process migrationeasier to implement: Once a process' context is migrated, data accessed by theprocess will move as needed.Recent workIn recent years there have been several projects investigating the design andbene�ts of SASOS. They have in common a 64-bit distributed persistent mem-ory, which is implemented without the use of specialised hardware. The systemsdi�er, however, in interesting ways.The Angel [6, 10] project was the �rst of these systems. The designers ofAngel have studied fault tolerance issues [11] and have shown that, by makingthe distributed single address space fault tolerant, this reliability is automati-cally inherited by other software structures built on top. They have furthermoredemonstrated that full POSIX support, including the di�cult fork() operation,is possible in a SASOS [12]. Angel has no explicit protection system. Instead,it relies on the ability of an object to be accessed or a service to be named inorder to protect it|protection is e�ectively left in the hands of servers. Thisapproach is similar to that taken in the Amoeba distributed system [13], whereservers use sparse capabilities for naming and protecting objects. While thedesign is aimed at 64-bit architectures, the Angel prototype was implementedon i486 hardware. It therefore has not considered issues resulting from a huge,sparsely used address space.Opal [14] in contrast uses password capabilities [15] to name and protectmemory segments, threads, protection domains, portals (protected procedureentry points) and resource groups (used for accounting). Access to these ob-jects generally requires that the correct capabilities be presented explicitly. Aprotected procedure call mechanism is supported which has the caller enter thecallee's protection domain. As the two protection domains are, in general, dis-joint, capabilities need to be passed explicitly to facilitate sharing. Opal, likeAngel, supports two di�erent mechanisms for communications, shared memoryand remote procedure calls (RPC).The prototype implements Opal on top of Mach, and uses the Mach UNIXserver for support. This approach has a impact on performance, as discussedbelow. For this reason, the Opal prototype has not fully demonstrated theinherent performance advantages of a SASOS.Nemesis [16] is another recent SASOS designed for e�cient support of mul-timedia applications. Its address space is not distributed, and persistence ishandled at the user level. Objects in Nemesis export multiple interfaces, whichare combined with closures to provide compile-time type checking.Grasshopper [17] is a related system. Its basic storage abstraction is called a5

container, which essentially constitutes an address space. Containers, or partsthereof, can be mapped into other containers. Grasshopper presents a gener-alised model of address spaces, which can emulate a traditional model, such asUNIX, as well as the SASOS model [18]. However, as the single-address-spaceview is not enforced by the system, Grasshopper cannot provide the SASOSguarantee that a speci�c data item always appears at the same virtual addressfor the duration of its life time, and thus cannot ensure that data containingembedded pointers can always be shared.The Mungi systemIn this paper we present theMungi system. We decided to build a SASOS whichwas as pure as possible, without sacri�cing support for features that we deemedessential, such as protection, encapsulation, and orthogonal persistence. We alsodecided to take the memory-only model as far as possible, and eliminated explicitsupport for I/O and conventional message-passing inter-process communication(IPC). An important consideration was not to use any special hardware andimplement Mungi on o�-the-shelf 64-bit workstations. Our measurements showthat this approach works: The system can outperform, by a signi�cant margin,traditional systems if applications make full use of the model.In the following sections we present �rst an overview of the Mungi system.This is followed by a discussion of our implementation. We then present ourperformance measurements which compare Mungi to two UNIX systems as wellas another SASOS, and demonstrate Mungi's superior performance, often bymore than an order of magnitude.Overview of the Mungi SystemThe basic abstractions provided by Mungi are: capability, object, task, thread,and protection domain. There also exists the concept of a bank account, whichis used to implement limitations on resource use.Objects are the basic storage abstraction. They consist of a contiguousrange of pages, with no further structure imposed by the system. Objects areprotected by capabilities which are described below.Threads are the basic execution abstraction. A task is a set of threads whichshare a protection domain. A protection domain consists of a set of capabilities.Capabilities are presented implicitly by storing them in a special data-structureknown to the system [19]. This reduces the need for most applications to dealwith capabilities and thus makes protection transparent.Mungi is a pure SASOS in that it provides no inter-process communicationfacility other than shared memory (plus semaphores for synchronisation). Fur-thermore, there are no explicit system calls to support I/O in Mungi. Instead,I/O devices are mapped into virtual memory, and user-level page fault handlersand virtual memory mapping operations are used for dealing with these devices.6

It may not be obvious why semaphores are needed for synchronisation, asinstructions for user-level synchronisation are provided in most modern architec-tures. The answer is that in a distributed system these instructions are unusablefor synchronisation unless strict memory coherence is enforced. Strict coherencehas been shown to be expensive, and unnecessary for many distributed appli-cations [20]. In order to maintain su�cient
exibility until we have gatheredenough experience with distribution in Mungi, we decided to support synchro-nisation in the OS. In a later version this can be moved to a library should thatturn out to be su�cient.The remainder of this section describes in more detail the basic Mungi ab-stractions. A full description of the API is given in [21].1CapabilitiesWhile SASOS make sharing of data easy, this must not happen at the expenseof security. In a traditional OS, memory protection is based on the fact thataddress space boundaries can only be crossed with the cooperation of the OS,and so access to objects external to a process' address space is under full controlof the system. As there are no such address space boundaries in a SASOS, thisseems, at �rst glance, to weaken protection.In fact, memory protection in SASOS is by no means weaker than in tradi-tional systems [14]. As far as protection is concerned, the concept of an addressspace is replaced by a protection domain, which is the set of objects a processis allowed to access. As in every virtual memory system, a process can onlyaccess areas of virtual memory for which a mapping to physical memory hasbeen established, and every attempt to access unmapped memory will result ina page fault. When the system handles that fault, it can verify whether theprocess has permission to access the memory region; i.e., whether it is part ofthe process' protection domain. If it is not, the system will generate a protectionfault. In essence, protection in a SASOS is provided not by controlling what isin the address space, but by controlling which parts of it can be accessed.In Mungi, protection domains are de�ned via capabilities, which confer totheir holders rights to perform speci�c operations on objects. When an objectis created, an owner capability to that object is returned, giving the holder fullrights to the newly created object. Note that the system considers any agentholding an owner capability as a legitimate \owner" of the object referenced bythat capability (i.e., there may be more than one owner).An owner can register less powerful capabilities for an object. There are�ve di�erent rights which capabilities may grant over an object: read (R), write(W), execute (X), destroy (D), and protection domain extension (PDX, whichwill be explained later). Each valid capability grants the holder one or more ofthese rights to an object.2 A capability granting RWXD rights is, by de�nition,1This document can be found under the Mungi WWW pages from URLhttp://www.cse.unsw.edu.au/~disy/Mungi.html.2Note that, as we rely on the hardware to enforce protection, on many architectures wecannot guarantee that a user cannot read an object to which they only hold an X capability.7

an owner capability.Capabilities are user objects and can be stored and passed around freely.They are implemented as password capabilities, protected from forgery by spar-sity. Each capability consists essentially of two parts: the base (64-bit) addressof the object the capability refers to (represented as the number of the object's�rst page), and a (64-bit) password. The password is chosen by the ownerwhen the capability is registered; it is normally obtained from a library rou-tine. Presently, we use a DES-based encryption scheme for creating \random"passwords. However, in the future we plan to use a hardware device produc-ing truly random bitstrings [22]. The list of valid capabilities for each objectis maintained by the system in a distributed system-wide directory, the objecttable (OT).As capabilities are user objects, it is not possible to determine the tasks andusers who have access to a particular object. It is also in general impossibleto prevent a particular user, who has been given a capability for an object,from handing this capability to other users. However, it is possible to revoke acapability completely by de-registering the corresponding password, renderingall copies of the capability useless. Furthermore, we provide the possibility torun untrusted code in a con�ned protection domain which prevents leaking ofdata; this is explained later.ObjectsAn object, once created, persists until explicitly destroyed, and may outlive itscreator. To reduce a proliferation of garbage objects, we maintain for each taska kill list of all objects created by that task. The object may be removed fromthe kill list by an explicit system call, allowing it to survive its creator.The address space released by deleted objects can be reused for new objects.When a new object is allocated in the place of an old one, the use of randompasswords ensures (in a statistical sense) that the new object receives di�erentpasswords than the old one. Hence dangling pointers and capabilities do notpresent a security problem, although they have other problems similar to thoseof dangling symbolic links in UNIX.Address space reuse is important as otherwise even a 64-bit address spacecould conceivably be exhausted [23]. With reuse, address space consumption isessentially limited by the amount of backing store available, which ensures thata 64-bit address space will su�ce until it becomes feasible to connect billions ofgigabytes of disk to a single system.Object tableAll information about objects, including the set of valid passwords for eachobject, is recorded in the object table. The kernel (and a few \privileged"tasks) hold capabilities to this table.To date we have not built a distributed version of Mungi, so we have not yetconstructed a distributed OT. However, we believe that several features of the8

design of the OT should allow for e�cient distribution. In particular, the OTis easily partitioned and many of the updates can be performed lazily. This isdiscussed in more detail in the Work in Progress Section below.Storage managementWhile the kill list helps to reduce the amount of garbage objects, this is notenough to prevent all secondary storage eventually �lling up with unused ob-jects. Automatic garbage collection does not provide a solution [24]. As in atraditional �le system, persistent objects are normally entered into a directory,which associates human-readable names with 64-bit object addresses. As longas the directory continues to contain a reference to an object, it cannot be au-tomatically removed as garbage. The system, instead, has to rely on users tomanage their storage.In Mungi no directory services are provided by the system itself. To assistusers in managing their storage, we instead use a di�erent, and more
exiblescheme, derived from the rent model used in Monash University's Password Ca-pability System [15] and the bank accounts used in Amoeba [13]. Whenever anobject is created, a bank account must be supplied, and the bank account refer-ence is recorded in the object's OT entry. A rent collector periodically chargesthe account for the disk storage used by the object. A paymaster periodicallydeposits funds into each account. An empty or overdrawn account cannot beused to create new objects, forcing the user to clean up. The rent collectorissues an account statement to show users where their money goes.An advantage of this approach is that the system is freed from the need tokeep track of pointers between objects. The main advantage, however, is thatobject creation/deallocation is not slowed down by accounting. Accounting isdone asynchronously, and the rent collector and paymaster can do their job attimes of low system usage. Furthermore, the rent can easily be adjusted inresponse to high demand, by using a per-byte charge which increases monoton-ically (and super-linearly) with the total amount of storage used in the system.When disk storage becomes tight, this will force users to clean up. Note thatin such a situation users who have let their account balance drop low will bethe �rst to run out of funds, while those using storage economically will be lessa�ected. Such a graceful degradation of service cannot be achieved with a quotasystem. Details can be found in [24].It should be pointed out that Mungi's support for bank accounts is limited torequiring the presentation of a valid bank account capability at object creationtime. The details of the accounting model are implemented at user-level. Henceit is easy to change the accounting policy to something di�erent than the schemejust outlined.Active protection domainsThe main design goal of Mungi's protection system is to be as unintrusive aspossible. Applications should normally not have to deal with capabilities ex-9

 ...
while (...) {

}

 ...
while (...) {

}

Capability lists

HandlersKernel data User dataFigure 1: Active protection domainplicitly. Consequently, we do not require explicit presentation of capabilities inorder to access an object. Instead, the system allows capabilities to be stored ina user-controlled data structure which is searched by the kernel when validat-ing access to an object. This data structure is called a task's active protectiondomain (APD).The APD, as shown in Figure 1, consists of a set of capability lists (Clists),which are user-level objects conforming to a standard format. The user providescapabilities for these Clists to Mungi, which are then kept in a list in kernelspace. In order to support user-de�ned implementations of Clists for specialpurposes, the user may also provide addresses of capability handlers.When validating access to an object previously unreferenced by a task, thekernel �rst �nds the object's entry in the OT, which contains the set of validcapabilities and associated rights for the object. The kernel then traverses theAPD in search of the �rst capability of su�cient strength matching one of thevalid passwords. Any Clists in the APD are traversed by the kernel, whilecapability handlers are upcalled and are expected to return a capability for theobject (or NULL). If the APD search fails to provide a matching capability, aprotection fault is raised.Mungi provides system calls to allow users to add or remove Clist capabil-ities or handler pointers from the APD. When a Clist capability is added, itis immediately validated before the kernel stores it in the APD. These capa-bilities are revalidated periodically to detect invalidations by the owners of theClists. The kernel can thus trust the Clists to be in the user's protection domainwhen traversing them. Handler addresses do not need to be validated as thefailure of upcalls is not a security issue. This is discussed in more detail in theImplementation Section.Although the management of Clists is not the kernel's responsibility, weenvisage that users will make Clists persistent and group them together toconstruct a workspace that de�nes a user's environment. When a user logs on,the APD of their shell will be initialised from their workspace. The majorityof tasks they create will inherit this APD. As a result, most applications are10

unaware of the presence of the capability system.Our use of implicit capability presentation di�ers signi�cantly from the ex-plicit model used in Opal. To access an object, an Opal task explicitly presentsthe capability to the kernel, asking that the associated object be attached to thetask's protection domain. As well as being less intrusive, implicit presentationas in Mungi provides a signi�cant bene�t. There is no requirement that an APDcontains capabilities for any of the Clists which de�ne that APD. This providesa mechanism to control propagation of capabilities: A task can be executed inan APD which does not allow access to the capabilities themselves. By provid-ing in addition the possibility to lock the APD, preventing further changes, weare able to con�ne an untrusted program [25].Protected procedure callsIn a SASOS, threads normally communicate via shared memory. However, inmany cases a more controlled access to data by clients is required|essentiallywe want a mechanism to support object encapsulation. This can be done if theobject in question is not part of any of the potential clients' protection domain,but a mechanism is provided for the clients to invoke methods which operate ina protection domain which includes the object.One way to achieve this is by having active objects; i.e., objects associatedwith a server task. Encapsulation can then be achieved by providing a mecha-nism such as RPC, which would be used by clients to have the server performoperations on the object. This approach has a number of drawbacks. For ex-ample, the server task needs to be running before any client can communicatewith it, and its ID must be known to potential clients. This could be achievedby registering the server so that the system will start the server at boot time,and have the server register its ID with some well-known naming service.A more signi�cant problem is that the client and server often need to sharesome data, while their protection domains are, in general, disjoint. The clientmust then explicitly pass capabilities to the server. This con
icts with ourgoal of providing protection in as transparent a fashion as possible, and incursthe additional expense of validating the capabilities in the server's protectiondomain. This additional expense could be avoided by allowing by-referenceparameters to an RPC call which the kernel would map into the server's viewof the address space irrespective of whether or not it holds a valid capability,or by the kernel manufacturing a new capability for the purpose of the RPC.We reject these possibilities since they circumvent the normal protection system,and obscure the protection model. In particular, they reduce the owners' controlover their objects, as access could not be reliably revoked.Instead of encouraging the use of active objects and a client-server model,we are using a protected-procedure-call mechanism. Tying protection domainsto procedures, and performing an automatic change of the protection domainduring invocation of such a procedure, is a natural idea in a capability system.It has been used since the 1970s in such systems as the Plessey 250 (see [26])and the Cambridge CAP computer [27]. Hydra, one of the pioneers of what11

Registered for
PDX Object

Protection Domain
of Task

Protection Domain
During PDX Call

Selected Subset
of Task’s PD

Protection Domain

Figure 2: Protection domains before (left) and during (right) a PDX call.is now called microkernels and the �rst object-based OS, made protected pro-cedures the basis of secure object invocation. A procedure had an associatedcapability list which de�ned the process' protection domain during the execu-tion of that procedure. Sharing of data between the procedure and its callercould be achieved by passing capabilities as parameters, which the procedurecould then add to its protection domain. The need to initialise a new protectiondomain on each procedure call, and to manipulate it again to enable sharing,made protected procedure calls expensive in Hydra.Our mechanism, called protection domain extension (PDX), is similar to thepro�le adoption mechanism of the IBM System/38 [28]. It allows the caller of aPDX procedure to extend its protection domain, for the duration of the call, bythe protection domain of the callee [29]. Hence, sharing can be achieved withoutthe need to pass capabilities to the procedure via parameters, and changes tothe protection domain are minimised. Unlike System/38, our PDX mechanismdoes not require special hardware, yet allows for e�cient implementation (asexplained later).The operation of PDX is illustrated in Figure 2. Prior to a PDX call, thethread is able to access only the objects in its protection domain. During aPDX procedure call, the thread's protection domain will consist of previouslyinaccessible objects, plus a selected subset (possibly all) of the original domain.After the call, the original domain is restored.A PDX object's descriptor in the OT contains, for each PDX capability, alist of valid entry points, and a Clist capability. In the simplest case, whenexecuting a PDX call the system �rst veri�es that the caller possesses a validPDX capability and is trying to access an entry point that is valid for thatcapability. The system then extends the caller's APD by adding the Clist foundin the OT, and �nally transfers control to the PDX code. When the PDXprocedure returns, the PDX Clist (and all cached validation information relatingto that Clist) is removed from the caller's APD. Note that for the duration ofthe PDX call, the calling thread executes in a protection domain di�erent fromother threads of the same task; i.e., other threads have no access to the calledobject (unless they also perform a PDX call to the same object).Instead of having the PDX procedure execute in a superset of the caller'sprotection domain, the caller has the option of explicitly supplying an APD12

when calling the PDX procedure. In this case, the call executes in a protectiondomain which is the union of the supplied APD and the Clist registered forthe PDX object. This gives the caller maximum control over which objects thePDX procedure can access. In particular, an empty APD may be passed to thePDX procedure, which then has no access to any of the caller's data (other thanany explicit by-value parameters).
2F

O2
O1

page fault

PM

P 21

F 1

PVM

2F

O2
O1

1P

PM

2

F 1

PVM

Figure 3: Page fault handling by a user-level pager. Top: A page fault occurs inpage P1 of object O1. Bottom: The pager has made P1 resident by mapping it topage P2 of object O2 (which, in this case, is handled by the default pager). VMand PM stand for virtual and physical memory, respectively, and non-residentpages are crossed out.Virtual memory mapping operationsNormally, when an object is allocated, the system uses a default page faulthandler to manage mapping of virtual pages to physical frames, and pagingthem to a backing store. Alternatively, a user-level page fault handler may beregistered for the object. As there is no I/O model in the system, a pager cannotuse I/O operations to handle a residency fault. Instead, the pager uses anothervirtual memory object to page to.To support such forwarding of page faults, Mungi provides mapping opera-tions between di�erent regions of virtual memory [30]. Pages belonging to anobject O1 may be mapped to another object O2, which causes O2's pager to be13

invoked when necessary. Page faults may be forwarded several times until theyreach the default pager (and thus physical memory).Figure 3 shows how a page fault is handled by a user-level pager. O1's pageruses O2 to provide physical memory for O1. When a page fault occurs for a non-resident page P1 within O1, O1's pager is invoked. The pager can then map P1to a page P2 of O2, to provide storage for P1. If P2 itself is non-resident, a pagefault is triggered on P2 and the process will repeat until the system default pageris invoked, which maps the faulting page to a physical frame. The mapping ofP1, once established, is lost again as soon as P2 becomes non-resident.Controlling I/OThe forwarding of page faults must ultimately result in I/O. I/O in Mungi issimply implemented by mapping devices into virtual memory, where they canbe accessed by suitably privileged tasks (i.e., those holding capabilities to theappropriate addresses).Mappings can also be used to give appropriate applications control overphysical I/O operations. To achieve this, all physical memory and disks aremapped into the virtual address space. The application may then be givencapabilities to portions of the mapped physical memory. As these pages neverbecome non-resident, the application can pin some virtual pages by mappingthem to physical memory. A write to disk can be forced by
ushing a page.Similarly, by giving an application a capability to some region mapping partof disk storage, the application can control placement of its data on disk, bymapping its objects to particular pages of the disk. This allows databases, forexample, to control their I/O as needed. A similar approach will be used toprovide applications with a means to control location of data in a distributedsystem where this is required for e�ciency reasons (normally the single addressspace hides distribution).Implications of aliasingThe default pager supports copy-on-write. While this introduces aliasing onread-only objects (and is thus harmless [31]), other mappings potentially intro-duce the same aliasing problems as in multi-address-space systems. This seemsto defeat some of the advantages of a SASOS. Remember, however, that a map-ping can vanish at any time, as soon as the source page of a mapping becomesnon-resident. This means that mapping operations, while necessary for pagefault handlers, are essentially useless for application code.No aliasing problems exist as long as actual data are always accessed throughthe same virtual address. This is easily ensured if applications only ever get tosee the \top level" object; i.e., the �nal target virtual pages of a mapping chain,while the source (or intermediate) virtual pages remain private to the page faulthandlers. This privacy can be enforced if the pagers do not give away capabilitiesto the \backing objects". The system discourages other uses of aliasing by notguaranteeing any coherency between aliases.14

Legacy software and user environmentsUnusual or novel computing models are unlikely to �nd acceptance unless theycan support traditional models reasonably e�ciently. In particular they mustprovide user environments similar to established systems.In the context of a SASOS this means that it must be possible to supportapplications written for multi-address-space systems like POSIX [32]. Mostof the POSIX interface presents no particular problems for emulation underMungi. A �le system, for example, while not necessary in Mungi, can easilybe implemented on top of it | it simply provides a �le interface to Mungiobjects. An open() operation sets up a data structure containing, among others,a current position pointer, which is used by subsequent read(), write() or lseek()operations. No explicit bu�ering is necessary, so the overhead is somewhatreduced compared to traditional �le I/O.A POSIX open() operation uses the directory system to convert a �le's pathname into a �le location. Similarly the open() emulation in Mungi interfacesto a naming system which converts human readable object names into objectaddresses. Mungi does not support a system-wide naming facility other thanvirtual memory addresses; it is left to the user environment to supply a text-based object name space. We presently use an adaptation of the Plan 9 namingsystem [33], as its concept of user-tailorable naming �ts the Mungi model well.However, other views of the object space could be used, including the familiarUNIX naming hierarchy.One complication arises from to the fact that in the single address spaceone cannot guarantee that objects can grow to arbitrary sizes | an object canonly grow until it hits the next object in the address space. However, the libraryroutines are easily able to hide this. In fact, as long as an object is only accessedvia the POSIX interface growth presents no real problem. If an object needs togrow it can be moved to a di�erent location in the address space.3The POSIX protection model can be emulated in Mungi by appropriateorganisation of one's Clists [25]. Operations like chmod() are possible in thisemulation.The biggest problem with POSIX compatibility is the fork() system call,which explicitly duplicates the process' address space. This is impossible to doin a SASOS, as there is only one address space. However, POSIX applicationswhich use the fork() operation have a simple view of their address space, whichconsists of a code and private data and stack segments. There is no need tomaintain the integrity of any external references into the data segment. Hence,it is possible on a fork() to create and initialise the child's data segment in adi�erent portion of the address space, provided that the POSIX application iscompiled to use suitable indirect addressing [12]. As we shall show later thisintroduces very little overhead, and this overhead only incurred for applicationswhich actually use fork().It is worth mentioning that even UNIX applications rarely rely on thefull fork() semantics. Usually a fork() system call is immediately followed by3Such a move a�ects only virtual memory, in reality no data is copied.15

an exec() call in the child process. This sequence corresponds well to theTaskCreate() system call in Mungi and can be supported without any problemsor overhead.Other software components, like programming support libraries, tools andwindow systems, present few problems. Most can be ported to Mungi withlittle or no e�ort, but others will require more extensive work. In many casessuch ported software will not bene�t from any of the inherent advantages of theSASOS model. Nevertheless, they ease migration of users and software.Implementation of MungiHaving presented an outline of the Mungi system in the previous section, wenow need to show that these abstractions can be build e�ciently on a conven-tional architecture. The details of the implementation are given below, whileperformance �gures are presented in the next section.We decided to build Mungi on top of the L4 microkernel [34]. The mainreason for this approach was that, by basing our system on a well-designed andoptimised microkernel, we would �nd it easier to produce an implementationwhich can demonstrate that the SASOS approach can lead to very e�cientoperating systems. We also expected that it would make the Mungi systemeasier to port between di�erent hardware architectures.Our choice of the L4 microkernel was also motivated by the close matchbetween our requirements and the L4 model. It provided the basic set of ab-stractions which we needed to build our system. The implementation of Mungias a server on top of the L4 microkernel adds a small cost of extra threadswitching which might be eliminated in a more integrated design. However, theperformance of our prototype shows that the bene�t would be small.The microkernelThe main features of L4 which made it suitable for our use are its small size, itsvery e�cient process management and IPC [35], and the
exible address spacemodel it provides.While the L4 interface is hardware independent (except for details like thenumber of registers used for by-value IPC parameters), the actual implementa-tion is not. It is mostly written in assembler, and inherently unportable [34].Furthermore, there were no 64-bit implementations of L4 available at the time.This meant that we had to implement L4 from scratch. In the following, wehighlight those features of our L4 implementation that impact on Mungi.Page tablesThe R4600 CPU features a software-loaded TLB tagged with an address spaceID (ASID). We maintain in software a two-way associative TLB cache for fasthandling of hardware TLB misses. On a miss in this software cache, the mapping16

is obtained from a guarded page table (GPT) [36, 37]. The GPT is an e�cientdata structure well suited for large, sparse address spaces.The main advantage GPTs have over alternative data structures, such asinverted page tables (IPTs) [5, 38], is that they e�ciently support sharing oflarge areas of the address space. In our implementation we use this for quicklymapping kernel data structures into the client's view of the address space forthe duration of a system call. Using clustered page tables [39] would have beenan alternative. However, we doubt that clustered page tables can handle verysparse address spaces, with many single-page objects, as e�ciently as GPTs.We are still investigating this topic.Our implementation on a 100MHz MIPS R4600 CPU takes 1,900 cycles(19�s) for handling a page fault; i.e., taking the fault, scanning the TLB cache,searching the GPT and establishing a mapping.Tasks and threadsA task in L4 is a set of threads sharing an address space. Each task also containsa special thread (\t0"), which is used for handling exceptions, including IPCevents and page faults, on behalf of the task. L4 tasks and threads are verylight weight; for example, creating a thread takes about 10�s. Creating a taskcosts about 75{100�s (depending on the number of cache misses), while deletionof a task takes about 47�s.Inter-process communicationIPC in L4 is designed to be extremely e�cient. An IPC call can pass by-valueparameters through registers. In addition, it can pass large memory regions by-reference by mapping them into the recipient's address space. As we will explainbelow, Mungi uses L4's IPC and address spaces only to manage protectiondomains. E�ectively, Mungi uses L4 IPC to provide parameter passing andcontext switching between protection domains. The IPC is not used for passinglarge amounts of data, even though that facility exists. All parameters aretransferred in registers.The cost of a null IPC is 99 cycles on the R4600 (compared to the cost fora null system call of 56 cycles).The Mungi layerThe L4 microkernel provides a high-performance base on which to build Mungi.Although the L4 interface was not originally envisaged to be used to support aSASOS, its
exibility and simplicity has made it an e�ective platform for Mungi.The following sections describe the implementation of the Mungi server.The Mungi serverThe Mungi API is implemented as an L4 user-level server. The main role ofthe server is to maintain the Mungi attributes of tasks, threads and objects. As17

well, it is responsible for enforcing the Mungi protection and addressing model.The server contains a number of threads dedicated to speci�c events. For ex-ample, one of these threads handles Mungi \system calls", which are translatedby library stubs into an IPC to this thread. Some of these calls, such as Mungithread operations, correspond closely to L4 operations, and can be forwardedto L4 with minimal overhead.Mungi uses another one of its threads to act as the default pager for all usertasks. Other threads in the server are used for purposes such as semaphoremanagement and time keeping.While Mungi makes use of message passing IPC for interaction between thesethreads, Mungi user threads are not aware of this IPC.Protection domainsEach Mungi task's protection domain is implemented as a separate L4 task andL4 \address space". The role of these address spaces is only to provide sepa-rate Mungi protection domains, and their translations from virtual to physicaladdresses are always consistent with each other to provide the single Mungiaddress space.For each protection domain the Mungi server maintains a cache of accessvalidations, consisting of a list of (address range, rights) pairs. This cache isconsulted by the Mungi server when handling a page fault. Only on a cachemiss will the server perform a full validation, requiring a search for matchingcapabilities of the OT as well as the APD. Hence, validations normally onlyneed to be performed on the �rst page fault to a previously unaccessed object.Each Mungi task uses the L4 t0 thread, which is invisible to user code, tohandle asynchronous events. For example, L4 translates exceptions into upcallsto t0 of the appropriate task. t0 will typically forward the exception to theo�ending thread.Upcalls by the Mungi pager thread to a capability handler are implementedas a call to t0 of the faulting task, which executes the handler code. Note that,since the Mungi thread does not execute the handler code itself, the address ofthe code does not require validation when added to the APD.Protected procedure callsA key concept in Mungi is the use of PDX to provide support for protectedprocedure calls. PDX is used for device drivers, user-level pagers, and to supportobject-oriented languages. It is therefore important that PDX be as low cost aspossible.When a thread �rst performs a PDX call, the Mungi server creates a newL4 task with the extended protection domain. If the PDX call is a properprotection domain extension, i.e., the caller does not provide an explicit APDparameter, the validation cache of the PDX task points to the validation cacheof the caller, so the PDX inherits all of the caller's validations.18

Once the PDX task is set up, the PDX call results in a context switch tothat task. Exiting the PDX procedure switches back to the caller's originalcontext. The PDX task is cached by the Mungi server for later calls from thesame protection domain. Since the PDX task's validation cache points to thecaller's cache, additional validations performed by the caller between PDX calls(or by another thread of the calling task while a thread is executing the PDX)immediately update the PDX as well, eliminating future validation costs. Thisalso works for nested PDX calls.PDX procedures which get passed an empty APD are a special case. The L4task set up to execute the call can be shared by all callers supplying an emptyAPD, no matter from which protection domain they originate. This means thatonly one L4 task needs to be cached for PDX procedures which need no access tothe caller's data. This class of procedures includes user-level pagers and manydevice drivers.Caching also works for PDX procedures which get passed an explicit APD.These start o� with an empty validation cache. On a repeated call, a hash ofthe APD is compared with that of any cached PDX kernel tasks associated withthe caller task. If a matching task is found, it is used, otherwise a new task iscreated.An alternative to setting up a new L4 task to receive PDX calls would be toactually modify the calling task's page tables in order to extend its protectiondomain. This modi�cation would need to be reversed on return from from thePDX, which would make PDX calls very expensive (as in Hydra). One advantageof our implementation is that repeated calls become very fast as they involvelittle more than a context switch, an operation which is very e�cient operationusing L4 IPC. A further advantage is that other threads in the calling task cancontinue executing without gaining access to the PDX's hidden data.PDX procedures may be multi-threaded, with several threads of the sametask executing the same PDX object concurrently (possibly using di�erent entry-points). This results in all threads sharing the same extended domain.ObjectsMungi provides operations for the creation and destruction of objects. L4 itselfdoes not actually provide memory allocation services. Rather, it relies on Mungito manage the address space, which it does by making use of the L4 mappingoperations. Objects are solely an Mungi abstraction, and the Mungi servermaintains the free list, disk mappings, validation caches, etc.Caching of validation data could potentially open a security hole: If an objectis deleted, and another object is immediately allocated in its place, validationcaching could give the holders of capabilities to the old object access to thenew object. We avoid this problem by a combination of two strategies: Firstly,all entries in the validation cache expire after a time period �t. Secondly, asobjects are deallocated, their address space is not returned immediately to thefree list. Instead the address space is entered into a stale list, from where itis moved lazily to the free list, but after a delay of at least �t. As well, Clist19

capabilities in the APD are revalidated after at most time �t. These strategiesensure that no validation data to the old object is still cached when its addressesare reused.Lessons learnedAs we had hoped, we found that the SASOS model is indeed easy to implement.The need for large parts of a traditional system has been eliminated, such as themanagement of �le system storage, since this job is done by the swap manager.There is no need to support a separate �le abstraction, with its data structures,mappings from �le positions to disk storage, etc. Unlike UNIX systems, we donot have to worry about the presence of aliases when shared memory is used.There is also a potential for simpli�cations at the hardware level, as virtualcaches would not require physical tags.The addition of virtual memory mapping operations has made it possible toincorporate into the single-address-space model user-level pagers and I/O, andleave, for example, the implementation of stability and fault tolerance to theuser level [30]. This allowed us to build a \pure" SASOS, where virtual memoryis the only communication medium between processes.Since we had to implement the microkernel as well as the higher layers ofthe system, the question naturally arises whether it was a good idea to basethe implementation of Mungi on a microkernel. We believe the answer to thatquestion is a clear \yes", for the following reasons:� The implementation of Mungi (written almost entirely in C) is easilyportable between di�erent hardware architectures (and L4 implementa-tions). As the number of L4 implementations increases, so do the plat-forms on which Mungi is available.� The microkernel provides a well-de�ned interface which allowed us to sep-arate our development e�orts. While L4 was being implemented on theR4600 target architecture, development of Mungi proceeded on an L4 im-plementation on the i486. Once L4 was running on the 64-bit system, theport of Mungi succeeded within around two weeks, in spite of both themicrokernel and the Mungi server being very unstable at the time. Withmore mature systems, the port would be a matter of days.� Experience with previous L4 implementations suggested high-performanceapproaches to issues such as context switching, scheduling, thread creationand destruction etc. This signi�cantly reduced the time spent in develop-ing the lowest software levels.� As we implemented L4 ourselves we still had the option of modifying themicrokernel interface should that have been necessary. The only instancewhere we found this advantageous is discussed below.� As we show in the Performance Section, layering the system did not re-sult in a signi�cant performance penalty, as our implementation of Mungi20

outperforms UNIX operating systems. This is consistent with the �ndingsof H�artig et al. [40], who showed that Linux can be converted to run as aserver under L4 at little run-time cost.One of the most encouraging lessons learned is that L4 proved to be a verysuitable base for implementing a system quite di�erent from what had originallybeen envisaged as a typical L4 \client".To date we have only noticed one drawback of this approach. Programmerswho are aware of the fact that Mungi is built on L4 can bypass the MungiAPI and call L4 directly, but this has no e�ect on the system itself. The onlyproblem that occurs is that it prevents con�nement, as we cannot control IPCbetween user tasks. Ideally, all IPC should go through the Mungi server. L4actually provides appropriate mechanisms to control IPC [41], but at the costof doubling the number of IPCs required to implement Mungi system calls, anoverhead which is estimated to be up to ten percent on the faster system calls.Instead we can support con�nement by modifying the L4 kernel such that itdisallows IPC between tasks at the same level (i.e., all user tasks under Mungi).There is no run-time cost for this modi�cation, as is shown in the PerformanceSection.PerformanceIn this section we present performance data for Mungi, and contrast them withtwo UNIX operating systems: Irix 6.2, a commercial UNIX operating systemand Linux version 2.1.674.Making direct comparisons between these systems is di�cult, as Mungi'ssuperior performance is a result of the use of a fast microkernel as well asthe inherent advantages of the SASOS model. However, it has recently beenshown [40] that Linux can be run as a server on L4 with essentially unchangedperformance. We conclude that whether Linux runs native or as a server on L4makes little di�erence in performance.We also compare Mungi with Opal where possible. This is complicated bythe fact that the systems are built on di�erent kernels and di�erent hardwareplatforms, and by the lack of availability of common benchmarks for comparison.However, we show that the Mungi model provides signi�cantly higher perfor-mance for important operations such as cross-domain calls, where Mungi's PDXeliminates the need for capability validation on each call.All the Mungi, Irix and Linux �gures were obtained on an 100MHz R4600based SGI Indy workstation with 64Mb of RAM. Comparisons with Opal arebased on published data [14]. These timings had been obtained on a DEC3000/400 AXP (133.3MHz Alpha CPU). According to its SPEC ratings, thismachine should be roughly as fast as the Indy (within 10{20%).54Linux/SGI is available from http://www.linux.sgi.com.5Unfortunately, no exact �gure can be given, as we only have SPEC-92 ratings for theAlpha used for Opal, and SPEC-95 ratings for our Indy.21

MicrobenchmarksHere we present timings obtained for basic Mungi system calls. These wereobtained for repeated calls (presumably hot caches), although some of the �guresvaried strongly between calls, obviously resulting from cache con
icts.The Indy's high cache miss penalty was evident in the fact that some �guresshowed an extremely strong dependence on the exact location of user code andstacks. A repeated PDX call, for example, requires approximately 950 cycles,or 9.5�s without cache misses. Actual timings, however, varied between 10 and20�s, depending on the location of the user stack.Where possible, we are comparing our timings with those obtained for com-parable operations on Irix and Linux, and for those reported for Opal. Thefollowing sections explain the �gures, which are summarised in Table 1.Operation Mungi Linux Irix OpalNull system call 4.6 6.3 7.7 >88Cross-domain call 10{20 161 450 133Thread create 83/48 N/A N/A N/AThread delete 48 N/A N/A N/AThread create + delete 131/96 2,450 4,882 N/ATask create 600 N/A 5,600 650Task delete 310 N/A 1,550 2,300Task create + delete 910 34,163 8,150 2,950Object create 60 N/A N/A 315Object delete 150 N/A N/A 900Object access 90 45 252 239?Object create + access + delete 300 447 2470 2,100Page fault/map 25 N/A N/A N/ATable 1: Microbenchmark timings (in �s). See text for explanations.Null system callThe cost of a null system call is 4.6�s in Mungi, its closest approximation inUNIX is the getpid call which costs 6.3�s in Linux and 7.7�s in Irix. A lowerlimit for the cost in Opal is that of a Mach null-RPC, 88�s. In spite of requiringtwo IPC operations, the Mungi version of this call is signi�cantly faster thanthe corresponding call in the other systems.Tasks, threads and IPCCreating a new thread in Mungi takes 83�s, which reduces to 48�s if an IDcan be recycled from a thread which has already terminated. In a contextwhere threads are created and deleted frequently (and where consequently thiscost is most important) this should mostly be the case. Thread deletion is the22

same cost as thread creation with recycling, i.e., 48�s. Thread times for Opalwere published in [42] for an R3000-based DECstation (create 140�s, delete230�s). However, as no clock speed or SPEC ratings were quoted for thatplatform, it is hard to compare these �gures. Irix and Linux do not presentlyhave a thread interface signi�cantly more lightweight than fork(), so we usedfork()/wait()/exit() as an approximation.Task creation costs around 600�s in Mungi (800�s with cold caches), thecorresponding fork()/exec() in Irix around 5,600�s. In Linux we could notmeasure task creation separately for lack of a timer of su�cient accuracy. Wemeasured the cost of fork()/exec()/wait()/exit() as the total of task creation anddeletion. The surprisingly high task creation cost in Linux (given its generallygood performance compared to Irix) might be a result of this version still beingunder development. In any case, the operations are about an order of magnitudefaster in Mungi than in the UNIX systems.The equivalent to task creation in Opal is creation and activation of a pro-tection domain, which takes 650�s, or about three times as long as in Mungi.The cross-domain call mechanism in Mungi is PDX, which costs between 10and 20�s. The equivalent operation in other systems is an RPC, which costsaround 450�s in Irix, 160�s in Linux and 133�s in Opal.ObjectsObject creation (which, by itself, does not allocate any backing store) costs 60�sin Mungi. Less than one microsecond of that is for the OT update (on a 4-levelB+-tree, which is su�cient to hold at least 32 million object descriptors [43]).Segment creation in Opal using a recycled inode costs 315�s.Object deletion in Mungi takes 150�s, compared to 900�s in Opal. Onlythe combination of creation, access and deletion could easily be measured in theUNIX systems. The results were about 50% slower in Linux and eight timesslower in Irix.UNIX systems require �les to be opened before �rst accessing them andclosed after the last access. Opal similarly uses explicit attach and detachoperations on segments. An attach followed by a detach takes 478�s \bestcase". We assume that the cost of an attach is half this time (which is most likelyerring in Opal's favour). Mungi does not feature explicit attach/detach systemcalls. Objects are made available to a task by inserting their capability into auser-maintained Clist (an operation that occurs less frequently than subsequentaccesses to the objects). The Mungi operation equivalent to an UNIX open()or an Opal attach is touching an object for the �rst time, which costs 90�s.This was the only operation we found to be faster in a UNIX system than inMungi: Opening a �le in Linux is twice as fast as validating a �rst access inMungi, obviously a result of the simpler UNIX protection model. Irix, however,is much slower.Mapping a further page of a previously validated object takes only 25�s inMungi (no comparable data are available for the other systems).23

SummaryThese microbenchmarks demonstrate two factors contributing to Mungi's per-formance: the bene�ts of an e�cient microkernel, and the advantages of theMungi object and protection model. In particular, the creation and deletion ofthreads, tasks and objects are signi�cantly faster than in Opal and the UNIXsystems. Only on the cost of the �rst access to an object was Mungi found tobe slower than one of the other systems (Linux).The most impressive result is that for cross-domain procedure calls, i.e.,PDX, which is at least an order of magnitude faster than the equivalent opera-tions in the other systems examined. It should be noted that the Opal �guresare for a call only, and do not include the validation of the capabilities that arelikely to be passed explicitly by the caller. A typical application would thereforesee an even greater di�erence in performance.OO1As an approximation to a \real-life" application we implemented the ObjectOperations (\OO1") benchmark [44]. OO1 simulates typical operations in asimple object-oriented database system, which is an example of the class ofapplications which we believe to bene�t most from the SASOS model. Clientcode invokes a database system to perform lookup, traverse and insert operationson a database. The database needs to encapsulate its data and relies on e�cientcross-domain calls for high performance. This benchmark therefore allows us tomeasure the e�ectiveness of our PDX mechanism.We have only implemented a simpli�ed version of the OO1 benchmark, as wewere only interested in comparing our use of PDX and the single address spacewith more traditional approaches. Given the simpli�cations we have made, itis important not to compare the numbers presented below with data publishedelsewhere. The results are only meaningful for comparing Mungi with a systemrunning the same code (under comparable conditions). More details on thesimpli�cations we have made to OO1 can be found in the Appendix.System lookup traversal insert totalforward reverseLinux 32-bit 7.99 5.97 N/A N/A N/AIrix 32-bit 7.44 4.77 5.13 4.76 22.10Irix 64-bit 7.78 6.47 7.49 6.23 27.97Mungi 64-bit 7.95 6.60 7.71 5.31 27.57Table 2: OO1 benchmark times (in ms) for the single process version.Table 2 shows the results of running single-process versions of the OO1 code;i.e., the database exists in the client's address space and is invoked by normalprocedure calls. All runs were repeated 20 times and the averages are reportedin the table. The data showed standard deviations of 1{7% in the Irix case,24

0.2{6.0% for Linux, and 0.3{4.0% for Mungi. Due to the lack of an accuratetimer in the present version of Linux/MIPS, the benchmarks on that platformhad to be run with a much increased iteration count. That made the times forthe reverse traversal and for the lookup operation impossible to compare withthe other results, and they are therefore not given in the table. Also, the Linuxbenchmarks could only be run in 32-bit mode.It can be seen that for 64-bit code the performance of Irix and Mungi systemsis very similar. This is to be expected, as identical code was executed, with nosystem calls between timer calls. Di�erences can only occur due to code beingallocated at di�erent addresses, which could lead to di�erent patterns of cacheand TLB misses.It is evident from Table 2 that 32-bit code executes signi�cantly faster than64-bit code on the chosen hardware; the di�erence is about 25%. This must bekept in mind when looking at the multi-process results. Irix 6.2 and Linux donot support 64-bit execution on our platform. We managed to get the single-process version of the code running in 64-bit mode under Irix, but the UNIXIPC versions had to be run in 32-bit mode. Hence the Mungi results belowinclude a 64-bit penalty of around 25% relative to Irix and Linux.We ran the OO1 benchmark (with minimal modi�cations necessary to enablee�cient execution) using di�erent protection domains for database and client. Inthe Irix version, we used two di�erent implementations of client-database com-munication: the UNIX System-V message-passing interface and the SGI-speci�cand highly tuned shared memory interface (with semaphores for synchronisa-tion). The Linux version used message-passing IPC and the Mungi version usedPDX.System lookup traversal insert totalforward reverseIrix 32-bit/message passing 946 1,445 1445 208 4,047Irix 32-bit/shared memory 949 1,409 1,411 203 3,972Linux 32-bit/message passing 344 467 461 842 2,114Mungi 64-bit/PDX 51 59 61 16 189Mungi 64-bit/PDX/restricted 50 58 60 16 184Table 3: OO1 benchmark times (in ms) for the multiple process version.Table 3 shows the results of the performance measurements of the IPC ver-sion of OO1. Mungi outperforms Irix in average by more then a factor of 20and Linux by more than a factor of 10. Comparing the values from Tables 2and 3 for 32-bit Irix code, it can be concluded that the cost of an RPC in Irixis around 450�s, in Linux about 160�s, while the same comparison for Mungiyields 21�s for a PDX call, which is consistent with the �gures given in Table 1.The observation that Irix shared memory IPC does not perform better thanSystem-V message passing is explained by the fact that the amount of actualdata passed is very small (around two dozen bytes), so that the cost is dominated25

by the system call and context switching overhead.The last line in Table 3 (marked \restricted") was obtained from runningMungi on top of a modi�ed L4 kernel, implementing IPC restrictions. In thisversion it is impossible to send IPC directly between Mungi user tasks, thisversion therefore fully supports con�nement. As can be seen this is achievedwithout any run-time penalty, but at the cost of a small modi�cation to thekernel.Overhead of fork() supportAs explained in the Section on Legacy Software, fork() can be implemented bysuitable indirect addressing of the data segments, at a cost of reserving oneregister. To evaluate this cost quantitatively we modi�ed gcc, the GNU C com-piler, as done by Wilkinson et al. [12]. Table 4 shows the result of benchmarkruns which were compiled in three di�erent ways: \normal" compilation (i.e.,without support for fork()) using SGI's C compiler, normal compilation usinggcc, and compilation using gcc with support for fork(). All versions were com-piled for 64-bit with full optimisation. The programs run are the single processversion of OO1, and two programs from the SPEC-95 suite. (Note that thetimes recorded in the table are total execution times, including setup costs andtimer overheads, which explains why the OO1 �gures are higher than those givein Table 2.) compilation OO1 heapsort nsieveSGI-cc normal 36.6 39.4 201.8gcc normal 33.9 37.8 196.8gcc forkable 34.6 38.0 196.8Table 4: The cost of supporting fork().It can be seen that compiling for fork() support results in a run-time penaltyof between 0 and 2%. The biggest penalty was observed in the OO1 benchmark,which is characterised by intensive use of pointers. The penalty for heapsortwas 0.5%, while no di�erence was observed for nsieve. This is a result of the lowpointer usage of these programs, which allows the compiler the optimise awaymost global pointer uses.We observe that even in the OO1 case the penalty for forkable code is quitesmall (and only needs to be borne by programs actually requiring fork()). Notethat this penalty is only about one third of what is gained from switching fromthe SGI C compiler to gcc.SummaryThe benchmarks show that Mungi clearly outperforms UNIX operating systemson some of the most important basic operations, as well as on an IPC-intensive26

benchmark of database operations. This shows that the single-address-spaceapproach is not intrinsically less e�cient than traditional operating systems,and has a signi�cant edge for certain classes of applications. We even �nd thatthe cost of full POSIX semantics, often considered the weak point of the SASOSmodel, is less than the performance di�erence resulting from the use of di�erentcompilers.The microbenchmarks also clearly outperform Opal's published results. Ob-viously, Opal's performance was partly a result of the platform chosen for theimplementation of the prototype. However, we have clearly demonstrated thatthe PDX mechanism can be implemented with very high performance, and isan inherent advantage of our model, compared to the approach taken by Opal.The most signi�cant performance advantage of a SASOS, however, will comein areas where the single address space can be used to avoid cross-domain callsor other operating system intervention altogether. This can, naturally, not bedemonstrated on small benchmarks, including OO1. We are therefore workingon a port of a full-blown object-oriented database system to Mungi, where thepotential of taking advantage of the model is particularly great.Work in ProgressPresent work on Mungi is focused mainly on application/user support, and dis-tribution. The former consists of completing the user environment. We areinterested in running \real-life" applications which can signi�cantly bene�t, interms of performance, from the SASOS model. As mentioned, we expect object-oriented database systems to belong to this category, and are consequently work-ing on a port of such a system.Work on distribution centres on providing hooks to applications which re-quire control over data location in a system which hides the network. This isrelated to the issue of providing control over physical I/O to applications whichneed it, when the system normally hides I/O. Similarly, the model must allowthe speci�cation of coherency properties, or, even better, allow coherency tobe implemented e�ciently at user level. As Mungi will require di�erent levelsof coherency for its own data structure, we are working on schemes which areuseful for the OS as well as its clients.One such data structure is the OT, which we have designed to work e�cientlyin a distributed environment. In particular,� the OT is based on a B+-tree, which allows e�cient searching for virtualaddresses, and can be used to partition the virtual address space intoseparate subtrees which can then be distributed,� the address space is partitioned, and each node is assigned one or morepartitions. Each node can only create objects in its partitions of theaddress space. This in no way prevents data from migrating to othernodes, but does require that requests to delete an object are forwardedto its creator node. The creator node plays no special role in any other27

operations. This strategy ensures that all updates of a particular part ofthe OT index structure are performed by a single node,� some of the object meta-data held in the OT changes infrequently (like thelist of passwords). Other meta-data, such as time stamps, do not requirestrict coherency, and can be updated lazily by an appropriate protocol,and� descriptors for new objects are entered into the OT lazily. An object isnot guaranteed to be in the OT unless it has been marked as \sharable"(at creation time or later by performing a system call). This avoids anyOT updates for short-lived objects such as most stacks and heaps. Thekernel can re-use objects which have never made it into the OT withoutcompromising security, as no other task can access an object which is notin the OT.ConclusionsSingle-address-space operating systems present a greatly simpli�ed program-ming model to applications. This makes them an attractive alternative to tra-ditional systems, particularly where data sharing across processes is important,as in object-oriented databases and persistent programming systems.In this paper we have shown that such a SASOS can be e�ciently imple-mented on o�-the-shelf hardware. Our Mungi system, based on our own imple-mentation of the L4 microkernel on a MIPS R4600 CPU, shows performance�gures which signi�cantly outperform a commercial UNIX system (Irix 6.2) aswell as the free Linux system in several benchmarks.We have also, as far as possible, compared our results to the Opal SASOSand shown that Mungi o�ers generally superior performance.The results not only show that SASOS can be implemented e�ciently, butalso con�rm that a well-designed microkernel provides an excellent base on whichto build operating systems without sacri�cing performance.AvailabilityDocumentation and source code for Mungi and L4/MIPS is freelyavailable under the terms of the GNU Public License, see URLhttp://www.cse.unsw.edu.au/~disy/Mungi.html for details.AcknowledgementsThe authors would like to thank UNSW students Jing Pang for performingthe benchmark runs under Irix, Andrew O'Brien and Conrad Parker for theLinux benchmarks, Luke Deller for his work on the 64-bit compiler for Mungi,and Ruth Kurniawati for implementing the index structure of the OT. We areindebted to Tim Wilkinson and Kevin Murray from City University, UK, and28

Paul Ashton from the University of Canterbury, New Zealand, for valuablediscussions, and especially to Tim for providing his gcc patches. Chris Amies,Dave Goodall, Fondy Lam, Lester Gock-Young, and Weibin Yuan, all formerstudents at UNSW, contributed to the project in its earlier stages. We wouldlike to thank the anonymous referees, particularly the one who took the timeto write several pages of very detailed and constructive comments. The projectwas supported by grant no A49330285 under the Australian Research Council'sLarge Grants scheme.OO1 Implementation DetailsFor our benchmarks we used the \small" database (20,000 parts) de�ned in [44].The lookup operation consists of searching 1000 random parts in the database;the database server is invoked once for each part. The insert operation creates100 new parts in the database and connects each to 3 random parts. The totalnumber of database server invocations is 400 in this case.The forward and backward traverse operations start from a randomly chosenpart and and follow all parts connected to it up to a depth of seven. Due to theway the database is de�ned, the forward lookup �nds exactly 3,280 parts, whilethe number of parts found in the backward traverse depends on the startingpoint. All timings reported in Tables 2 and 3 for that part of the benchmarkare normalised to the average number of parts found.The OO1 speci�cation requires the client and database server to execute onseparate nodes. However, as we do not yet have networking implemented in oursystem we ran OO1 on a single node. Furthermore, OO1 speci�es that cachesare
ushed to disk regularly. As we are not (yet) interested in I/O performance,but wanted to measure the performance of basic system calls, as experienced byuser code, we ignored that speci�cation and instead ran everything in memory.While running the benchmark on a single node, we nevertheless ran the clientand server codes in separate protection domains (except for the \single process"results given in Table 2). In Mungi, this means that the client code invokes thedatabase via PDX calls. The speci�cation requires that the database systeminvokes a user procedure to return data. We implemented this by having theclient pass a PDX procedure as a parameter to the PDX procedure used toinvoke the database. The database then calls that client-supplied PDX with anempty APD (i.e., a nested PDX call is performed). In Irix and Linux the clientand server are running as separate tasks; the client invokes the server via RPCand the server uses another RPC to deliver results back to the client.In order to ensure a fair comparison we used our own random number gen-erator in the benchmark, hence the actual operations performed are exactly thesame across systems. We also had the benchmark do its own memory manage-ment to avoid unnecessary interference from allocation strategies. All resultsare based on hot caches.Our comparison is actually biased in favour of the UNIX version, as weare using virtual memory addresses as object identi�ers. A real database in a29

traditional system such as UNIX could only do this in combination with pointerswizzling or an indirection via an object table, both of which incur additionaloverhead. This overhead is ignored in our benchmarks. In a SASOS the chosenimplementation strategy is possible without overhead and is the natural way toproceed.References[1] W. Cockshot, M. Atkinson, K. Chisholm, P. Bailey, and R. Morrison. Per-sistent object management systems. Software: Practice and Experience,14:49{71, 1984.[2] P. R. Wilson. Pointer swizzling at page fault time: E�ciently supportinghuge address spaces on standard hardware. Computer Architecture News,19(4):6{13, June 1991.[3] M. Atkinson, P. Bailey, K. Chisholm, P. Cockshott, and R. Morrison. Anapproach to persistent programming. The Computer Journal, 26:360{365,1983.[4] M. E. Houdek, F. G. Soltis, and R. L. Ho�man. IBM System/38 supportfor capability-based addressing. In Proceedings of the 8th Symposium onComputer Architecture, pages 341{348. ACM/IEEE, May 1981.[5] J. Rosenberg and D. Abramson. MONADS-PC|a capability-based work-station to support software engineering. In Proceedings of the 18th HawaiiInternational Conference on System Sciences, volume 1, pages 222{31.IEEE, 1985.[6] T. Wilkinson, T. Stiemerling, P. E. Osmon, A. Saulsbury, and P. Kelly.Angel: A proposed multiprocessor operating system kernel. In EuropeanWorkshop on Parallel Computing, pages 316{319, Barcelona, Spain, 1992.[7] J. S. Chase, H. M. Levy, E. D. Lazowska, and M. Baker-Harvey. Lightweightshared objects in a 64-bit operating system. In Conference on Object-Oriented Programming Systems, Languages, and Applications, 1992.[8] S. Russell, A. Skea, K. Elphinstone, G. Heiser, K. Burston, I. Gorton, andG. Hellestrand. Distribution + persistence = global virtual memory. InProceedings of the 2nd International Workshop on Object Orientation inOperating Systems, pages 96{99, Dourdan, France, September 1992. IEEE.[9] F. G. Soltis. Inside the AS/400. Duke Press, Loveland, CO, USA, 1996.[10] T. Wilkinson and K. Murray. Evaluation of a distributed single addressspace operating system. In Proceedings of the 16th International Conferenceon Distributed Computing Systems, pages 494{501, Hong Kong, May 1996.IEEE. 30

[11] T. Wilkinson. Implementing Fault Tolerance in a 64-Bit Distributed Op-erating System. PhD thesis, Systems Architecture Research Centre, CityUniversity, London, UK, July 1993.[12] T. Wilkinson, K. Murray, A. Saulsbury, and T. Stiemerling. Com-piling for a 64-bit single address space architecture. Technical reportTCU/SARC/1993/1, Systems Architecture Research Centre, City Univer-sity, London, UK, March 1993.[13] S. J. Mullender and A. S. Tanenbaum. The design of a capability-baseddistributed operating system. The Computer Journal, 29:289{299, 1986.[14] J. S. Chase, H. M. Levy, M. J. Feeley, and E. D. Lazowska. Sharing andprotection in a single-address-space operating system. ACM Transactionson Computer Systems, 12:271{307, November 1994.[15] M. Anderson, R. Pose, and C. S. Wallace. A password-capability system.The Computer Journal, 29:1{8, 1986.[16] I. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D. Evers, R. Fair-bairns, and E. Hyden. The design and implementation of an operatingsystem to support distributed multimedia applications. IEEE Journal onSelected Areas in Communications, 14:1280{1297, 1996.[17] J. Rosenberg, A. Dearle, D. Hulse, A. Lindstr�om, and S. Norris. Operatingsystem support for persistent and recoverable computations. Communica-tions of the ACM, 39(9):62{69, September 1996.[18] A. Lindstr�om, J. Rosenberg, and A. Dearle. The grand uni�ed theoryof address spaces. In Proceedings of the 5th Workshop on Hot Topics inOperating Systems (HotOS), pages 66{71, Orcas Island, WA, USA, May1995. IEEE.[19] J. Vochteloo, S. Russell, and G. Heiser. Capability-based protection in theMungi operating system. In Proceedings of the 3rd International Workshopon Object Orientation in Operating Systems, pages 108{15, Asheville, NC,USA, December 1993. IEEE.[20] J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Techniques for reducingconsistency-related communication in distributed shared memory systems.ACM Transactions on Computer Systems, 13:205{243, 1995.[21] G. Heiser, J. Vochteloo, K. Elphinstone, and S. Russell. TheMungi kernel API/Release 1.0. Technical Report UNSW-CSE-TR-9701, School of Computer Science and Engineering, University of NSW,Sydney 2052, Australia, March 1997. Latest version available fromhttp://www.cse.unsw.edu.au/~disy/.[22] C. S. Wallace. Physically random generator. Computer Systems Science &Engineering, 5:82{88, 1990. 31

[23] D. Kotz and P. Crow. The expected lifetime of single-address-space oper-ating systems. Computing Systems, 9:155{178, 1996.[24] G. Heiser, F. Lam, and S. Russell. Resource management in the Mungisingle-address-space operating system. In Proceedings of the 21st Aus-tralasian Computer Science Conference, pages 417{428, Perth, Australia,February 1998. Springer-Verlag. Also available as UNSW-CSE-TR-9705from http://www.cse.unsw.edu.au/school/research/tr.html.[25] J. Vochteloo. Design, Implementation and Performance of Protection inMungi. Phd thesis, School of Computer Science and Engineering, Universityof NSW, Sydney 2052, Australia, July 1998. Submitted.[26] H. M. Levy. Capability-Based Computer Systems. Digital Press, 1984.[27] R. Needham and R. Walker. The Cambridge CAP computer and its protec-tion system. In Proceedings of the 6th ACM Symposium on OS Principles,pages 1{10. ACM, November 1977.[28] V. Berstis. Security and protection in the IBM System/38. In Proceedings ofthe 7th Symposium on Computer Architecture, pages 245{250. ACM/IEEE,May 1980.[29] J. Vochteloo, K. Elphinstone, S. Russell, and G. Heiser. Protection domainextensions in Mungi. In Proceedings of the 5th International Workshopon Object Orientation in Operating Systems, pages 161{165, Seattle, WA,USA, October 1996. IEEE.[30] K. Elphinstone, S. Russell, G. Heiser, and J. Liedtke. Supporting persistentobject systems in a single address space. In Proceedings of the 7th Interna-tional Workshop on Persistent Object Systems, pages 111{119, Cape May,NJ, USA, May 1996. Morgan Kaufmann.[31] C. Chao, M. Mackey, and B. Sears. Mach on a virtually addressed cachearchitecture. In USENIX Mach Workshop, pages 31{51, 1990.[32] Portable Operating System Interface (POSIX)|Part 1: System Applica-tion Program Interface (API) [C Language], 1990. IEEE Std 1003.1-1990,ISO/IEC 9945-1:1990.[33] D. Presotto, R. Pike, K. Thompson, and H. Trickey. Plan 9, a distributedsystem. In EurOpen Conference, pages 43{50, Troms�, Norway, May 1991.[34] J. Liedtke. On �-kernel construction. In Proceedings of the 15th ACMSymposium on OS Principles, pages 237{250, Copper Mountain, CO, USA,December 1995.[35] J. Liedtke, K. Elphinstone, S. Sch�onberg, H. H�artig, G. Heiser, N. Islam,and T. Jaeger. Achieved IPC performance (still the foundation for e�-ciency). In Proceedings of the 6th Workshop on Hot Topics in OperatingSystems (HotOS), pages 28{31, Cape Cod, MA, USA, May 1997. IEEE.32

[36] J. Liedtke. A basis for huge �ne-grained address spaces and user levelmapping. In Proceedings of the 7th European Conference on Object OrientedProgramming (ECOOP) Workshop on Granularity of Objects in DistributedSystems (GODS'93), Kaiserslautern, Germany, July 1993.[37] J. Liedtke. On the Realization Of Huge Sparsely-Occupied and Fine-Grained Address Spaces. Oldenbourg, Munich, Germany, 1996.[38] A. Chang and M. F. Mergen. 801 Storage: Architecture and programming.ACM Transactions on Computer Systems, 6:28{50, 1988.[39] M. Talluri, M. D. Hill, and Y. A. Khalid. A new page table for 64-bit addressspaces. In Proceedings of the 15th ACM Symposium on OS Principles, pages184{200, Copper Mountain Resort, Co, USA, December 1995. ACM.[40] H. H�artig, M. Hohmuth, J. Liedtke, S. Sch�onberg, and J. Wolter. Theperformance of �-kernel-based systems. In Proceedings of the 16th ACMSymposium on OS Principles, pages 66{77, St. Malo, France, October 1997.ACM.[41] J. Liedtke. Clans & chiefs. In 12. GI/ITG-Fachtagung Architektur vonRechensystemen, pages 294{305, Kiel, 1992. Springer Verlag.[42] M. J. Feeley, J. S. Chase, and E. D. Lazowska. User-level threads and in-terprocess communication. Technical report 93-02-03, Department of Com-puter Science & Engineering, University of Washington, Seattle, WA 98195,USA, 1993.[43] G. Gonnet and R. Baeza-Yates. Handbook of Algorithms and Data Struc-tures. Addison-Wesley, 2nd edition, 1990.[44] R. G. G. Cattell and J. Skeen. Object operations benchmark. ACM Trans-actions on Database Systems, 17:1{31, 1992.

33

