General-Purpose Timing: The Failure of Periodic Timers

Dan Tsafrir

Yoav Etsion

Dror G. Feitelson

School of Computer Science and Engineering
The Hebrew University, 91904 Jerusalem, Israel

Abstract

All general-purpose commodity operating systems
use periodic clock interrupts to regain control and
measure the passage of time. This is ill-suited for
desktop settings, as the fine-grained timing require-
ments of modern multimedia applications require
a high clock rate, which may suffer from signif-
icant overhead. It is ill-suited for HPC environ-
ments, as asynchronous interrupts ruin the coordina-
tion among cluster nodes. And it is ill-suited for mo-
bile platforms, as it wastes significant energy, espe-
cially when the system is otherwise idle. To be truly
general-purpose, systems should therefore switch to
a mechanism that is closer to one-shot timers (set
only for specific needs) while avoiding the poten-
tially huge overhead they entail. With a careful de-
sign it is possible to achieve both high accuracy and
low overhead, thus significantly extending the appli-
cability of general-purpose operating systems.

1 Introduction

In recent years it has became increasingly popular
to use commodity operating systems (OSs) in con-
texts traditionally requiring specialized and usually
expensive proprietary software. For example, nowa-
days Linux is deployed on a huge variety of systems
ranging from as little as mobile phones, cameras,
and PDAs, to as large as supercomputers [16, 2].
This situation places the focus on the term “general”
when considering “general purpose” OSs, as they are
required to reasonably support an unforeseen wide
range of applications with different and sometimes
contradicting needs. Within this context, the timing
services provided by the OS pose major problems,
with different domains pulling in different directions.

A major consideration when designing a timing
service is accuracy, which is important in the desk-
top domain, with various multimedia applications
that require millisecond resolution. Providing this by
frequent periodic interrupts creates substantial over-

head, especially in HPC environments. In this con-
text, interrupting the application on one node may
cause delays on all the other nodes in a cluster, thus
amplifying the detrimental effect. Reducing unnec-
essary activity is also desirable for mobile platforms,
where energy conservation is of prime importance.
We have found that these three domains are some-
times unaware of each other and offer conflicting
solutions. We therefore ask: can the different con-
siderations be reconciled? Somewhat surprisingly, it
seems the answer is yes. The problems stem from
a 30-years-old design decision: the use of periodic
timers. At boot time, a general-purpose kernel (all
Windows and Unix flavors) sets a hardware clock to
generate periodic interrupts every few milliseconds
(this constant time interval is called a tick). The in-
terrupts invoke a kernel routine (called the tick han-
dler) responsible for important OS activities such as
accounting for the CPU time used by the current pro-
cess, designating it for preemption if its quantum is
exhausted, or notifying the process if it has pend-
ing signals. The practical meaning of this is that
general-purpose OSs are based on polling. While
this was a good design decision in the 1970s, things
have changed, and its drawbacks are accumulating
into a critical mass suggesting the price of polling is
becoming too high, and that it’s time to reconsider.

2 The Problem with Polling
2.1 Imaccuracy and Overhead

Until recently, 100 Hz was the common default tick
frequency, used by Linux, the BSD family, Solaris,
IRIX, the Windows family, Mac OS X, and more.
This value hasn’t changed much since the dawn of
general purpose OSs. For example, in 1976, Unix 6
running on a PDP11 used a tick rate of 60 Hz [10].
The problem with 100 Hz rate is that soft realtime ap-
plications such as movie players or games with real-
istic video rendering require accurate timing down to
milliseconds, and a 100 Hz resolution is not enough.

o 60 — 1000 Hz
o
WL 50 A
ge) pr ~.
2 40 - ," “+¢ 100 Hz
.q—') ”'
S 30 »
® A
20 T T T T

20 30 40 50 60
desired FPS

Figure 1: Desired and achieved frames per second (FPS)
for the Xine MPEG viewer, on systems with 100 Hz and
1000 Hz tick rates.

Fig. 1 is a striking example [3]. It shows desired
and achieved frame rates of the Xine MPEG viewer
for 500 frames of a memory-resident clip, when run-
ning on a Linux system with 100 Hz and 1000 Hz
ticks. As the memory and CPU power are not bot-
tlenecks in this case, display rates mandated by the
MPEG standard (25, 30, 50, and 60 FPS) can all in
principle be achieved. However, when using a 100
Hz system to display 60 FPS, Xine might repeat-
edly discard frames due to a timing misalignment —
similar to the requirement for a sampling-frequency
greater than twice the bandwidth of the original sig-
nal in Shannon’s sampling theorem.

Consequently, there is a growing trend of increas-
ing the tick rate to 1000 Hz (Linux, FreeBSD, Drag-
onFlyBSD). But even finer timing services are re-
quired in other, non-desktop applications. Video
rates of up to 1000 FPS are used for recording high-
speed events, such as vehicle crash experiments [15].
Similar high rates can also be expected for sampling
sensors in various situations. Even higher rates are
necessary in networking, for the implementation of
rate-based transmission [1]: Full utilization of a 100
Mb/s Fast Ethernet with 1500-byte packets requires a
packet to be transmitted every 120 us, i.e. 8333 times
a second. On a gigabit link, the interval drops to 12
us, and the rate jumps up to 83,333 times a second.

A general-purpose operating system that aims to
support such applications must increase its tick rate
significantly. This of course comes at the price of
additional overhead, both direct (context switching
from the running process to the tick handler and
back; executing the handler) and indirect (resulting
cache and TLB pollution). A tick frequency suf-
ficient for obtaining sub-millisecond latency under
loaded condition incurs an unacceptable overhead

penalty of up to half the throughput [3]. Section 3
will survey other solutions to this problem and show
that these are either inadequate for general purpose
OSs, or conflict with the domains described next.

2.2 Asynchrony and Overhead

Clusters are becoming very popular for high-
performance computation (HPC). Such systems typ-
ically employ a general-purpose OS on each node
(e.g. in last year’s Top500 supercomputer list ten
of the top twenty machines ran Linux). Parallel
jobs are executed on such clusters by spawning one
process per CPU, and running to completion with
no interference. HPC applications are often bulk-
synchronous which means each participating process
is composed of iterative computation phases sepa-
rated by barriers (where speedy processes wait for
lagging ones to catch up). After each barrier, pro-
cesses perform some communication before moving
to the next phase. The granularity, or time it takes to
complete a single computation phase, can be a mil-
lisecond or even less for real world applications [12].

In recent years, several independent studies re-
vealed a peculiar phenomenon: fine-grained jobs
running on a cluster composed of 4-way SMP nodes
terminate faster if they explicitly waste resources
and leave one (or more) processors idle per node
[13, 12, 7]. This phenomenon was traced to a vari-
ability in the duration of computation phases: In
most cases phases take a constant time to complete,
but sometimes these are prolonged due to individual
system activity of nodes. This activity is assigned to
an idle CPU if such exits, but will otherwise preempt
a running process of the parallel job. The delay is ar-
guably unnoticeable for a sequential application. But
in the context of a bulk-synchronous job, the price
is dramatically amplified, as all the other processes
across the entire cluster must wait for the delayed
process to catch up and complete the barrier.

In an attempt to quantify the extent of this phe-
nomenon we came up with the following simplistic
model: Let n be the number of nodes used by a job.
For a given node, let p be the probability that a pro-
cess running on it is delayed in the current phase.
Assuming independence, a job’s probability to com-
plete the current phase with no delay is (1 — p)™. As
shown in Fig. 2, if a job is to complete most phases

1 [T

0.8

no delay prob.

1 10
number of nodes

100 100010000

Figure 2: The probability a job isn’t delayed in the cur-
rent computation phase, as a function of its size: (1 — p)"

CDF

1-CDF [log y]

107"
1072
107
1074
107
108

phase duration [milliseconds]

Figure 3: Cumulative Distribution Function (CDF) of
time actually taken to run a loop designed to take 1ms, un-
der the default (OTHER) and realtime (FIFO) scheduling
priorities. The right plot focuses on the tail by showing
the survival function on a log scale.

with no delays, p should be at least an order of mag-
nitude smaller than 1/n. For example, if a cluster has
100 nodes, we should aspire to reduce p below 1073,

In reality p depends on the job’s granularity. For
the purpose of this paper, let’s assume this is 1 ms.
We have calibrated an empty loop (a computation
phase) to finish after 1 ms, and ran it a million times
on a Pentium-IV 2.8GHz Linux machine with 1000
Hz ticks, saving a cycle-resolution timestamp after
each phase. No other user processes were executing.
At the end of the benchmark we computed the du-
ration of each phase by subtracting successive mea-
surements. The results — shown in Fig. 3 — are very
disturbing. Most phases take 1 ms or a bit more,
but some are longer than 1.6 ms with probability of
p = 1072, According to Fig. 2, this means clusters of
only tens of nodes will almost certainly suffer at least
one node with such a delay in each phase, causing a
global slowdown factor of 1.6. Larger supercomput-
ers could suffer doubling of runtime.

When using the default OTHER scheduler the sit-
uation is especially bad, as system processes might
interfere; With the realtime FIFO scheduling, only
system interrupts are able to interfere. Instrument-

ing the kernel to log all interrupts revealed that the
only activity present in the system while the mea-
surements took place were about a million ticks and
3,000 network interrupts, indicating ticks are proba-
bly the main cause of the problem. This was verified
by repeating the measurements with kernels com-
piled with 100 and 10 Hz ticks, which experienced
far smaller time variability, respectively. But mea-
suring direct overhead of the tick handler indicated
that it only accounts for 0.8% of available cycles (us-
ing the data from Fig. 3, indirect overhead is found
to be about 14% — significant even for a uniproces-
sor). We therefore concluded that most of the effect
is indirect overhead, due to cache misses. This was
verified by repeating the experiment with the cache
disabled. In this case, subtracting interrupts’ direct
overhead from the duration of the phases in which
they occurred resulted in a perfectly vertical CDF.

To conclude, our findings indicate that the ob-
served variability is a product of ticks, network in-
terrupts, and the cache effects they cause. However,
many clusters employ high-end communication net-
works (Myrinet or Quadrics) that provide dedicated
processors for handling of network events. Such
hardware eliminates network interrupts as a source of
variability, leaving periodic ticks as the major source
of degraded performance.

2.3 Power Consumption

A major consideration for handheld and mobile de-
vices is the conservation of energy. Handling each
tick requires the expenditure of some energy — 20W
for a MIPS processor according to Li and John [9],
not counting additional energy spent to re-populate
caches. In fact, this is not only a consideration for
mobile devices: the energy wasted by general pur-
pose OSs around the world on unnecessary ticks is
probably quite significant. This includes not only
idle time, but also think time, as occurs for exam-
ple between typing successive sentences. Note that
CPU throttling has no effect on OS ticks, as these are
performed regardless of any throttling activity.

To demonstrate the effect of ticks on energy con-
sumption we connected a measuring power supply
to a crippled laptop with all devices disabled. Some-
what surprisingly, the power used was not linearly
related to the Hz (Fig. 4); instead, it achieved a min-

@ 10 100 =&
T 8 ~8 =
Z s]L Jr ~e0 8
5 41 {h H —40 £
g 2 ‘\{#~*~ - 20 g
D_ Lo PN PN
LA A PGP e

O MO Oy o o wo o O O O

- N N MIFTONO0OO O O O

~ N IO O

O Power -

¢ Overhead Tick Frequency [Hz]

Figure 4: Power consumption of an idle processor as

function of Hz, and overhead measured as percent in-
crease over the minimum of 4.77W.

imum at mid-range (266-500Hz). Moreover, we ob-
served that lower frequencies experienced two power
states: some samples were as high as 7W, while most
were around 4W. The solution to this mystery is that
the idle loop executes the HLT instruction, which
stops execution and places the processor in a HALT
state until an interrupt occurs. At low tick frequen-
cies, the processor has sufficient time to shutdown
most of its units before an interrupt occurs, forcing it
to restart those units. This shutdown/wakeup cycle is
apparently power consuming.

When running an idle loop that executes a NOP
instead of HLT, or when executing a simple loop,
the power consumption is constant at around 14W
regardless of Hz. The reason is that it does not mat-
ter whether the power is consumed by the idle loop,
the user code, or the tick handler — they all require
about the same. Thus the effect of ticks on energy is
most pronounced when the system is idle. However,
it should be noted that overhead of periodic timers
also affects non-idle time, as it causes applications
to run longer thus consume more power. In partic-
ular, there is a significant indirect cost of additional
power-consuming cache activity after interrupts [9].

To conclude, it seems remarkable that such a huge
effort is devoted to throttling (slowing the hardware
clock when possible), while the useless activity of
the OS clock is completely overlooked.

3 The Solution: Smart Timers

The typical solution to the problems described above
has been to design a domain-specific alternative, for
example, special schedulers to improve the support
for soft real-time applications [1, 6, 11, 3]. But the
root problem in all three domains is periodic ticks; if
we can avoid them, we will have a more general so-

lution. We therefore suggest that periodic timers be
replaced with smart timers, defined here to combine
three properties: (1) accurate timing with a settable
bound on maximal latency, (2) reduced overhead by
aggregating nearby events, and (3) reduced overhead
by avoiding unnecessary periodic events.

A step in this direction was taken by soft timers
[1]. These reduce the reliance on periodic timers by
exploiting existing timing opportunities, such as each
return from a system call (when the price of con-
text switching to/from the kernel is already payed).
Under some workloads such opportunities occur at
a higher rate than ticks, thus improving average tim-
ing resolution. Unfortunately, the timing of a specific
event cannot be guaranteed (violating the first smart
timers requirement), so periodic ticks serve as a fall-
back (thus violating the third). Moreover, soft-timers
are no help for the popular workload composed of a
single soft real-time application (e.g. movie player)
which goes to sleep between successive operations
(frames display) while leaving the system idle (and
therefore opportunity-less) in between.

A basic OS principle suggested by Finkel is that
events at a high level are actually polling at a lower
level [4]. For over 30 years OSs have used polling.
It is now time to consider pushing it down to the
hardware, leaving the OS to be event-based. This
approach is adopted by one-shot timers, which are
only set for specific events; when there are no pend-
ing events, the system simply relinquishes control,
and allows a user application to make full use of the
machine. One-shot timers have been used in sev-
eral (mainly real-time) OSs [5, 8, 14]. However,
without some bound on the interrupt frequency, this
approach violates the second requirement of smart
timers. Consequently, it is unsuitable for a general-
purpose OS, as any user can effectively bring the OS
down by generating millions of events with nanosec-
ond differences.

The overhead for multiple finely-placed events is
overcome by firm timers, which combine periodic,
soft, and one-shot timers [6]. This mechanism uses
an “overshooting” parameter .S, such that if a timer
is requested for time 7', the system will actually set
ittoT'+ S. If the kernel is entered after 7" but before
T+ S (e.g. due to a system call a-la soft timers), then
the requested event will be executed and the associ-

ated overhead will be avoided. Otherwise, the timer
will explicitly go off at 7' 4 S and pay the overhead
price — but amortize it by also firing all other timers
requested for times up to 7" + S (and set to actually
happen up to 7" + 2S5). Setting S to zero turns firm
timers into one-shot timers.

Firm timers already meet two requirements of
smart timers: allowing timing services as accurate
as required (by setting S), and bounding the over-
head of adjacent timers by aggregation. Divorcing
firm timers from periodic ticks will turn them into
full fledged smart timers. With such a mechanism,
setting .S to 100 us will be similar in every respect to
a 10,000 Hz kernel, save useless periodic ticks.

Fortunately, the three reasons given by Goel et al.
[6] for choosing to build firm timers on the exist-
ing periodic tick infrastructure are not show stoppers.
One is that keeping ticks allows for setting high res-
olution timers only for the next tick, which in turn
allows for 32 bit operation; however, the alternative
of 64-bit operation is available. Another is the claim
that the data structures are more efficient, which may
be true but is not crucial. The third is the desire to
avoid breaking existing code that relies on the pe-
riodic work done every tick. We are currently in the
process of turning Linux-2.6 to be tickless, and so far
it seems the code explicitly executed on every tick
can be dealt with in a straightforward manner: in-
stead of billing the running process on every tick, this
is done on each kernel entry, making billing and time
keeping more accurate but costlier; instead of (SMP)
load balancing on every tick, this is done upon every
fork and exit; instead of running NTP code on every
tick, this is only done when necessary, etc.

Context switching is also easily solved: if there are
two or more runnable processes, a timer is set to end
the quantum; otherwise, no timer is set, allowing the
single process to run with no interference. The OS
will resume control only upon other device interrupts
(keyboard, mouse, network, etc.).

Another problem is the fact periodic ticks have
been around for so long, some user code came to
rely on them. Regrettably, the Linux HZ macro may
be visible to users through inclusion of appropriate
headers. For example, there are 13 occurrences of
HZ within the source code of the Unix top utility.
We hope that this practice is not widespread.

In conclusion, we note that current solutions for
the problems related to OS ticks accept this polling
strategy as if it was carved in stone: soft and firm
timers build on ticks [1, 6], unaware of and con-
flicting with HPC noise reduction techniques which
aspire to reduce Hz [7]; power conservation efforts
only acknowledge ticks existence so that they will be
taken into account [9]. This need not be the case.
There is no technical limitation preventing a tickless
OS (as one-shot OSs do in fact exist). The only ques-
tion is whether this is realistic, in terms of existing
software which can potentially be affected.

References

[1] M. Aron and P. Druschel, “Soft timers: efficient
microsecond software timer support for network
processing”. ACM Trans. Comput. Syst., Aug 2000.

[2] J.J. Dongarra et al., “Top500 supercomputer sites”. URL
http://www.top500.org/. (updated every 6 months).

[3] Y. Etsion, D. Tsafrir, and D. G. Feitelson, “Effects of
clock resolution on the scheduling of interactive and soft
real-time processes”. In SIGMETRICS, Jun 2003.

[4] R. A.Finkel, An Operating Systems Vade Mecum.
Prentice-Hall, 2nd ed., 1988.

[5] E. Gabber et al., “The pebble component-based operating
system”. In USENIX Annual Technical Conf., June 1999.

[6] A. Goel et al., “Supporting time-sensitive applications on
a commodity OS”. In 5th Symp. Operating Systems
Design & Implementation, Dec 2002.

[7] T. Jones et al., “Improving scalability of parallel jobs by
adding parallel awareness to the operating system”. In
Supercomputing, Nov 2003.

[8] I. Leslie et al., “The design and implementation of an
operating system to support distributed multimedia
applications”. IEEE J. Select Areas in Comm., Sep 1996.

[9] T.Liand L. K. John, “Run-time modeling and estimation

of OS power consumption”. In SIGMETRICS, Jun 2003.
J. Lions, Lions’ Commentary on UNIX 6th Edition, with
Source Code. Annabooks, 1996.

J. Nieh et al., “A SMART scheduler for multimedia
applications”. ACM Trans. Comput. Syst., May 2003.

F. Petrini et al., “The case of missing supercomputer
performance: achieving optimal performance on the 8,192
processors of ASCI Q”. In Supercomputing, Nov 2003.
J. C. Phillips et al., “Namd: biomolecular simulation on
thousands of processors”. In Supercomputing, Nov 2002.
B. Srinivasan et al., “A firm real-time system impl. using
commercial off-the-shelf hardware and free software”. In
IEEE Real-Time Technology & App. Symp., Jun 1998.

D. Tyrell et al. “Rail passenger equipment crash
worthiness testing requirements and implementation”. In
Intl. Mechanical Eng. Congress & Exposition, Nov 2000.
“Linuxdevices.com”. URL
http://www.linuxdevices.com/.

(10]

(11]

(12]

(13]

(14]

[15]

[16]

