IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, AUGUST 2017 1

Evolution of the Unix System Architecture:
An Exploratory Case Study

Diomidis Spinellis, Senior Member, IEEE, and Paris Avgeriou, Senior Member, IEEE

Abstract—Unix has evolved for almost five decades, shaping modern operating systems, key software technologies, and development
practices. Studying the evolution of this remarkable system from an architectural perspective can provide insights on how to manage
the growth of large, complex, and long-lived software systems. Along main Unix releases leading to the FreeBSD lineage we examine
core architectural design decisions, the number of features, and code complexity, based on the analysis of source code, reference
documentation, and related publications. We report that the growth in size has been uniform, with some notable outliers, while
cyclomatic complexity has been religiously safeguarded. A large number of Unix-defining design decisions were implemented right
from the very early beginning, with most of them still playing a major role. Unix continues to evolve from an architectural perspective,
but the rate of architectural innovation has slowed down over the system’s lifetime. Architectural technical debt has accrued in the
forms of functionality duplication and unused facilities, but in terms of cyclomatic complexity it is systematically being paid back through
what appears to be a self-correcting process. Some unsung architectural forces that shaped Unix are the emphasis on conventions
over rigid enforcement, the drive for portability, a sophisticated ecosystem of other operating systems and development organizations,
and the emergence of a federated architecture, often through the adoption of third-party subsystems. These findings have led us to
form an initial theory on the architecture evolution of large, complex operating system software.

Index Terms—Unix, Software Architecture, Software Evolution, Architecture Design Decisions, Operating Systems.

1 INTRODUCTION

NIX! has a long and celebrated history. Its evolution

spans five decades and is a result of the work by
thousands of developers, including several distinguished
pioneers. As an operating system, it has left an undeniable
mark on the history of computing, while it has influenced
tremendously the current state of the art in software, net-
work, and hardware engineering.

Studying the evolution of operating system software is
not just significant from a historical perspective; it can pro-
vide valuable insights into evolvability best practices and
anti-patterns, for large, complex, and long-lived systems.
Unix is a unique case among all operating systems, both
due to its longevity, and its impact on the operating systems
that followed. The evolution of a system of this size, com-
plexity and age can shed light on how similar systems can
sustainably grow without the perils of software aging like
soaring technical debt or uncontrolled architectural decay.

In this paper we study the evolution of Unix along the
FreeBsD lineage from a software architecture perspective.
While there have been studies on how Unix evolved (see
Section 2), these have mostly focused at the source code
level and were limited to the kernel. On the contrary, we
turn our attention to the system architecture and study
a) the core architectural design decisions across the main

e D. Spinellis is with the Athens University of Economics and Business,
Greece.
E-mail: see http://www.dmst.aueb.gr/dds/

o P Avgeriou is with the University of Groningen.

Manuscript received December 19, 2016.

1. UNIX® is a registered trademark of The Open Group. For the sake
of simplicity, in this paper we use the word “Unix” to refer both to
UNIX systems developed at Bell Labs and to Unix-like systems, such as
FreeBsD, that descended from them.

releases, and b) the evolution in the number of the system’s
features (obtained from the Unix reference documentation)
and in the code’s complexity. The former entails qualita-
tive analysis, while the latter quantitative. These analyses
subsequently lead to forming an initial theory on the archi-
tecture evolution of large and complex operating systems,
regarding their form, pace, driving forces, as well as the
accumulation of architectural technical debt.

The rest of the paper is structured as follows: In Section 2
we present related work, whereas in Section 3 we elaborate
on the case study design. In sections 4 and 5, we present the
qualitative results (main architectural design decisions), and
the quantitative results (evolution of size and complexity)
respectively. Next, in Section 6 we discuss the main findings,
and in Section 7 the threats to this study’s validity. Finally,
in Section 8 we conclude the paper with a summary and
discussion of our findings.

2 RELATED WORK

The work reported here covers mainly two areas: a) software
evolution in general, which has been intensely studied, and
b) the evolution of Unix in particular, where related work is
more thin on the ground.

2.1 Software Evolution

There have been several studies on the longitudinal evolu-
tion of large systems. The seminal work of Lehman [1] and
its subsequent refinements attempted to establish laws of
software evolution, not unlike those of biological evolution.
Those laws have been the subject of much discussion and
research work [2]: their validity has been long debated, their

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, AUGUST 2017 2

nature and scope have been iteratively refined by many
researchers, while several studies have examined whether
the laws hold for particular case studies. The phenomenon
of software evolution has also been studied under different
terms, such as Software Aging [3], Software Decay [4], and
more recently Technical Debt [5].

One of the most popular ways to study software evo-
lution focuses on the growth of the source code. Hatton et
al. conducted the largest study to date on software growth
rate; specifically they studied the growth rate of over 404
million lines of both open source and proprietary software
and concluded that code doubles about every 42 months
[6]. Similarly, a large study on 6000 open source systems
by Koch [7] revealed that while the mean growth is linear,
there is a significant percentage of systems with super-linear
growth.

Several papers examine the evolution of open source
software from diverse angles [8]. Many take a quantita-
tive approach, using statistics to determine relationships
between various attributes, such as modularity and com-
plexity [9], growth and change rate [10], complexity and
cumulative change [11], or even the contributions and col-
laborations of the user community through social network
analysis [12]. Some papers examine evolution of systems
written in C in terms of modularity and complexity, and are
thus directly relevant to this work. An early study of the
Linux kernel growth by Godfrey and Tu [13] argued that
the kernel’s super-linear growth rate could be attributed
to the linear growth of several subsystems; this is related
to our finding (Section 6.3) that the accumulation of large
subsystems plays an important role in the modern evolution
of Unix. A subsequent study on the same topic [14] also
looked at the issue of code complexity and found that “the
average complexity per function, and the distribution of
complexities of the different functions, are improving with
time.” Roughly similar trends, along with what appears to
be a self-correcting process, are shown in a study of Unix
programming practices [15].

There has also been a significant number of studies on
the evolution of operating systems, particularly Linux. Mac-
Cormack et al. [16] studied Linux in terms of its structure
and compared it with the first and an evolved version of
Mozilla; the results emphasize the modularity of Linux and
how Mozilla evolved from a less to a more modular struc-
ture (compared to Linux) in a matter of years. In addition to
the aforementioned Linux study by Godfrey and Tu [13],
which mostly measured lines of code of the operating
system and its major subsystems, a subsequent study of
the Linux kernel, conducted by Israeli and Feitelson [17],
aimed at characterizing the operating system according to
Lehman’s laws of evolution. They used a number of quan-
titative metrics in addition to lines of code, such as number
of system calls and cyclomatic complexity [18]. They were
able to confirm several of Lehman’s laws, while one of the
interesting findings is that complexity decreases over time.
In a follow-up study, Feitelson studied the Linux kernel
evolution lifecycle [19], summarizing it as a linear piece-
wise model with increasing slopes.

In addition to studying software evolution at the level
of source code, a number of studies have focused on the
architecture level. Behnamghader et al. [20] proposed a

method for architecture recovery and subsequently used
this method to study 23 open source systems examining the
architectural changes during long periods of system evolu-
tion. Other approaches have also looked at architecture evo-
lution, but using source code artifacts, such as classes and
packages, as first-class entities. For example, D’Ambros et
al. [21] proposed architectural metrics derived from source
code analysis, and subsequently visualized those metrics
to illustrate different aspects of the evolution of both the
code and the architecture. Similarly, Wettel and Lanza [22]
focused on the visualization of ‘coarse-grained’ character-
istics of software evolution (packages and classes) as well
as ‘fine-grained” ones (methods). A final example is the
work of Bouwers et al. [23], who proposed an architecture
metric for architecture partitioning into components based
on the evolution of numerous open source and proprietary
systems.

Compared to the discussed related work, our work has
the following differences: a) we focus on Unix; b) we analyze
the architecture evolution not at the component level but
at the level of architecture decisions, the seven key Unix
feature types (user commands, system calls, libraries etc.),
as well as the form and pace of architecture evolution,
architectural technical debt, and notable architectural char-
acteristics; c) we use data sources that span 48 years and 30
system releases.

2.2 Work on the Design and Evolution of Unix

The importance of Unix and its pedigree, rooted first in
industrial (AT&T Bell Labs) and then in academic (University
of California at Berkeley) research, has endowed it with
numerous publications that detail the system’s structure and
evolution. These cover snapshots, subsystems, or specific
periods.

Bell Labs staff published tens of papers on Unix and its
applications as technical reports [24], [25], [26], [27], [28],
[29], [30], [31], [32], [33]. Most of these were also distributed
with each Unix release as Volume 2—Supplementary Docu-
ments of the accompanying Unix Programmer’s Manual. Two
issues of The Bell System Technical Journal, which appeared
in 1978 and 1984, were entirely devoted to Unix; these were
later also published in book form [34], [35]. Bell Labs staff
also published in outlets covering more diverse topics [36],
[37], [38], [39], [40], [41]. This tradition of open publication
was continued by staff and alumni of Berkeley’s Computer
Science Research Group (CSRG), as well as other systems
researchers and developers [42], [43], [44], [45], [46], [47],
[48], [49], [50]. These papers and many others provide rich
insights regarding the functionality and evolution of specific
facilities as well as the whole system.

Of particular importance to this study are: the CACM pa-
per introducing the features, ideas, and design of Unix [36];
Ritchie’s retrospective, detailing the system’s strengths and
weaknesses [51]; Thompson’s overview of the implementa-
tion of Unix [52]; Rosler’s paper on the evolution of C [53];
the study of portability as a design-shaping force [54]; and
a subsequent report by Ritchie on the evolution of Unix,
focusing on the filesystem, process control, 170 redirection,
and high-level languages [55]. More recent articles have
covered the restoration and curation of historical artefacts,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, AUGUST 2017 3

such as early editions of Unix [56], [57] and repositories of
them [58], or their subsequent study [15], [59].

Another category of material related to this study is
books detailing the internal workings of Unix and thereby
also parts of its architecture. The thing that started it all is
a slim two volume set prepared in 1977 by John Lions as
teaching material for his operating systems course at the
University of New South Wales. The first volume contains
a line-by-line listing of the Sixth Edition Unix kernel, while
the second volume is a source code commentary explaining
the functionality of each listed element. Confusion regard-
ing the associated intellectual property rights resulted in
it circulating for two decades in samizdat photocopies or
digital scans, before legal hurdles were lifted to allow its
formal publication [60].

A decade later, Maurice Bach published a book covering
in abstract terms, without reference to specific source code
elements, the design of the Unix kernel, with an emphasis
on System V Release 2 [61]. The book, based on material
the author prepared for a course he taught at AT&T Bell
Laboratories, covers most important data structures and
algorithms. Meantime, on the West Coast, researchers who
had worked on the Berkeley versions of Unix, published
another book detailing the design of BSD Unix [62]. This
work was expanded and updated at regular intervals to
cover new editions of BSD Unix [63] and then its FreeBSD
descendant [64], [65].

In this area we also mention Organick’s high-level ar-
chitecture analysis of the MULTICS operating system [66]—a
system much larger and considerably more ambitious than
several early versions of Unix. This is relevant, because AT&T
Bell Labs was developing the system together with MIT and
General Electric. When AT&T pulled out from the devel-
opment of MULTICS, the Bell Labs team was left without
a system on which to experiment with operating system
design and, also, with valuable lessons learned from the
MULTICS project.

This paper is not directly comparable to the work sum-
marized here, but it builds on it (see Section 3.3) and on
empirical data to study the evolution of Unix over a half-
century period.

3 CASE STuDY DESIGN

The case study as an empirical method is used for investi-
gating a phenomenon in its real life context [67]. The main
reason for selecting to perform a case study rather than
other types of empirical studies, is that we want an in-
depth understanding of how and why architecture evolu-
tion phenomena occurred within the Unix ecosystem. This
case study has been designed and is presented according to
the guidelines of Runeson et al. [67].

3.1 Objectives and Research Questions

The goal of this study, stated here using the Goal-Question-
Metric (GQM) approach [68], is to “analyze the Unix oper-
ating system for the purpose of evaluation and characteri-
zation of its architecture evolution with respect to its main
architecture design decisions, size and complexity from the
point of view of software developers in the context of the

Unix ecosystem”. The aforementioned goal can be achieved
by answering the following research questions:

RQ1 What are the main architectural design decisions
along the major releases of the system?
How did complexity and the number of features

evolve along the main releases of the system?

RQ2

The first question aims at investigating the architecture’s
evolution from a gqualitative perspective. An architecture
is the set of main design decisions [69], [70]. Therefore,
we study architecture evolution by identifying the major
design decisions that were introduced along a number of
the most significant releases (see Section 4). Such design
decisions are mainly: (a) architecture components, including
their interfaces, such as the kernel, shells, and libraries;
(b) architecture connectors such as pipes and C header
files; (c) architecture patterns [71] that were applied in the
system, such as layering and reflection; and (d) the princi-
ples that guide the system architecture, such as modularity
and separation of concerns. Architecture components and
connectors, patterns and principles constitute some of the
key architecture decisions of software systems [69], [72]. We
also report other types of decisions that cannot be classified
in these categories, e.g. naming conventions. Every design
decision is accompanied by a rationale, which is the most
important section in decision documentation [70].

The second question looks also at the evolution of the
Unix architecture, but from a quantitative point of view.
Specifically we look at how metrics of size and complexity
evolve over time; these metrics concern system features (e.g.
number of user commands or system calls), as determined
by the Unix reference documentation (for more details see
Section 5.1). This gives us a complementary perspective
to the qualitative results, as we can discern overall trends
across decades rather than notable architecture changes in
individual releases. Eventually, we combine the quantitative
and qualitative results during our discussion (see Section 6)
in order to derive findings and conclusions.

We note that in such quantitative analyses, it is common
to also measure cohesion and coupling. However, in the case
of Unix, this would require substantially more manual work
for each revision of Unix. Namely, it would entail: a) the
development of custom tools to analyze PDP-7 and PDP-11
assembly as well as early dialects of C; b) the configuration
of analysis tools for the file layout and linking policies of
each revision. Therefore, this is considered as out of scope
for this work, but it does constitute interesting future work.

The answers to both research questions are interesting
beyond the case of Unix. Thus, they will be used as raw
data to form an initial theory on the architecture of large
and complex operating systems (see Section 6).

3.2 Case Selection and Units of Analysis

The case study of this paper is characterized as single-case
and embedded [67]: the Unix operating system is the case,
while the different versions are the units of analysis. Our
study starts with the unnamed 1970 PDP-7 version that
became Unix, followed by the so-called “Research” editions
that came out of Bell Labs, then continues with the Berkeley
Software Distributions (BSD), and finishes with versions of

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, AUGUST 2017 4

TABLE 1
Units of Analysis: Key Releases, Dates and Size Metrics

Lines of Code

Release Date Kernel Library Programs
Research PDP7 1970 2489 0 9095
Research V1 3 Nov 1971 4768 ? ?
Research V2 12 Jun 1972 ? 1075 16968
Research V3 15 Feb 1973 ? ? ?
Research V4 30 Nov 1973 7141 ? ?
Research V5 Jun 1974 8778 5634 53176
Research V6 May 1975 12347 7092 137471
Research V7 Jan 1979 19710 14251 289890
Bell 32V 28 Aug 1979 16572 14224 297 436
BSD 3 22 Mar 1980 25096 4637 545690
BSD 4 16 Nov 1980 35616 20522 674 660
BSD 4.1¢c/2 2 Apr 1983 85312 32817 1002882
BSD 4.2 1 Jan 1985 91309 31296 1264981
BSD 4.3 4 Mar 1987 127725 40740 2401810
BSD 4.3/Reno 2 Jan 1991 357466 125267 2894330
BSD 4.3/Net2 20 Aug 1991 295677 265316 2404966
386BSD 0.0 4 Mar 1992 92565 176 680 776 862
386BSD 0.1 15 Jul 1992 129884 176387 2604311
FreeBSD 2.0 22 Nov 1994 381206 262920 2932862
BSD 4.4 25 Jul 1995 730422 246184 6367338
BSD 4.4/Lite2 25 Jul 1995 648069 250281 5348090
FreeBSD 3.0.0 21 Jan 1999 957625 395846 5024204
FreeBSD 4.0.0 20 Mar 2000 1371122 450225 6442181
FreeBSD 5.0.0 16 Jan 2003 2180639 613034 7919271
FreeBSD 6.0.0 3 Nov 2005 2796311 567130 9183128
FreeBSD 7.0.0 24 Feb 2008 3561595 632643 10238163
FreeBSD 8.0.0 20 Nov 2009 4099266 746689 10747628
FreeBSD 9.0.0 2 Jan 2012 5371628 761459 15135800
FreeBSD 10.0.0 16 Jan 2014 6599640 699317 17780696
FreeBSD 11.0.0 22 Sep 2016 8518968 733620 21529323

the FreeBSD operating system distribution that carries on
its development until today (see Figure 7 in Section 6). We
could not study Unix versions that derive from the Research
editions via AT&T System V, such as Solaris, AIX, and HPUX,
because most of the corresponding code remains proprietary
and inaccessible. We chose not to study the evolution of
Research editions into Plan 9 [41], due to the system’s
limited adoption and lack of packaged release distributions.
Other systems deriving from the BSD source code base are
NetBsD, which focuses on widespread architecture porta-
bility, especially among embedded devices, and OpenBsD,
which focuses on security. Although these projects differ in
terms of vision and technologies, all frequently exchange
among them code and ideas. This paper examines the archi-
tectural evolution in the popular FreeBsD line, to capitalize
on the first author’s inside knowledge of FreeBSD and on
the system’s excellent published design documentation [64],
[65].

An overview of the major releases that comprise the
units of analysis in this study appears in Table 1.1 For
the Research editions the release date is derived from the
corresponding manual date; in the remaining cases from
the timestamp of the newest file. Cases where the code
associated with specific releases has not been preserved are
marked with a question mark. Details about that release
were obtained by studying its manual, which, thankfully,
is available for all versions of Unix. Further quantitative

2. Footnotes prefixed by L (Ln) document the derivation of numbers
and tables through correspondingly numbered listings appearing in the
supplementary online material.

data for each one of these versions appear in Figure 3 in
Section 5.1.

3.3 Data Collection

In order to answer the research questions, we collected
both qualitative and quantitative data. More specifically, for
both RQ1 and RQ2 we used two data collection techniques
[73]: documentation analysis on a number of documents
(qualitative data) as well as static analysis of the source code
(quantitative data). For the latter we examined the source
code for each of the Unix releases, obtained from the Unix
history repository [58]. For the former we used the following
documents.

e The documentation (Unix Reference Manual pages)
associated with each release [74]. In the cases where
this was not available it was reconstructed from the
source code markup.?

e Books and research papers described in Section 2.2.

e Recollections of Unix pioneers [75], [76], [77], [78],
[79], [80], [81].

The use of multiple data sources, allowed us to perform
data source triangulation, i.e., we were able to confirm the
findings from different types of data sources. More details
are given on Section 7.

A large part of our study is based on a data set of the
Unix reference documentation and its visualization in the
form of timelines [74]. This documentation is available from
the First Research Edition onwards in what is known as
“Volume I” of the Unix Programmer’s Manual [82]. Note that
Volume II [83] contains supplementary documents, which
provide an in-depth treatment of specific tools and topics,
such as the shell [84], the C programming language [85], the
lint program checker [86], the tbl table formatter [87], and
so on. Fortunately, the Unix documentation is maintained
in electronic format (as troff [33] files) together with the
system’s source code. For releases where the source code has
been lost, (denoted by a question mark in Table 1) scanned
copies of the manual are still available.

To answer RQ]1, a data set of all the system’s architectural
design decisions for every available release was created,
based on the documentation. The data format and their
collection process are described in reference [74]. The corre-
sponding data and generation scripts are available online.*

To answer RQ2 we collected data primarily through
source code analysis (to measure complexity) and document
analysis on the Unix reference manuals (to measure feature
set size).

3.4 Data Analysis

Quantitative data are analyzed through simple descriptive
statistics and illustrated through histograms and scatter
plots. To calculate the cyclomatic complexity [18] at the
component level, we looked at the mean value over all
functions comprising the corresponding component. This
follows recently published results indicating that the mean

3. https:/ /www.spinellis.gr/blog/20171119/, https://github.com/
dspinellis/unix-v3man, https://github.com/dspinellis / unix-v4man
4. https:/ / github.com/ dspinellis /unix-history-man

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, AUGUST 2017 5

and median rather than the sum are better defect predic-
tors [88].

In order to analyze qualitative data we have performed
coding using Constant Comparison [89]. Specifically we
performed Constant Comparison iteratively, refining the
codes with their relationships in each iteration. The codes
correspond to the architecture design decisions that were
deemed worth reporting per major release of the system; in
that sense the codes were not pre-formed but post-formed
(i.e., they were created during the coding process). As is
common in Constant Comparison (see reference [89]), we
focused on unifying explanations for the various studied
decisions, in particular why those decisions were made and
how.

In the following sections we attempt to answer the
research questions: Section 4 focuses on RQ1 by showing
the evolution of the architecture design decisions in the
major Unix releases; Section 5 tackles RQ2 by presenting
the evolution of Unix size and complexity.

4 QUALITATIVE RESULTS

To answer the first research question, we examine the main
architectural design decisions in major releases of the system
(see Table 1). Each sub-section first introduces the Unix
release and subsequently provides a short discussion of the
principal design decisions for that release, such as compo-
nents (e.g. commands, routines etc.), connectors (e.g system
calls, sockets etc.), patterns (e.g. Layers, Pipes and Filters,
Reflection etc.), and principles (e.g. modularity, virtualiza-
tion, low coupling etc.).

We used the detailed interactive timelines described in
reference [74] to note when each feature appeared and
when features disappeared. Hyperlinks from the timelines
to the documentation allowed us to assess the type and
importance of each new feature. Figure 1 summarizes the
nine online timeline diagrams into a single timeline of the
principal design decisions of Unix.

In the following text, when documentation regarding a
particular architectural design decision appeared in a given
version of Unix then a reference is made to the correspond-
ing “manual page” using the conventional name(SECTION)
format. for example Is(I) refers to the /s command in Sec-
tion I of the Unix reference manual.’ In other cases, our
text may refer to Unix source code, using a footnote such
as this.5! This can be used to find and access the associated
release, file, and line through a correspondingly numbered
note provided in the supplementary online material.

4.1 PDP-7 Unix

Unix was originally written (as an unnamed system) in PDP-
7 assembly language. A recently found and restored artifact
from mid-1970s [59], allows us to examine its structure
and techniques employed in its construction. The following
design decisions stand out. Many of these survive until
today.

5. Note that Roman section numbering (I-VIII) was employed from
the First to the Sixth Research Edition. We follow the same convention
in our references to these editions.

Listing 1. The inode definition in PDP-7 Unix

i .=+1

inode:
i.flags: .=+1
i.dskps: .=.+7
i.uid: =41
i.nlks: .=.+1
i.size: .=.+1
i.uniq: .=.+1

.= inode+12

Kernel Despite the system’s diminutive size of 13439'2

lines, there is a clear separation between an operating
system kernel that offers a few tens of services and user-
level commands. The kernel loads and executes user-level
commands, provides the file abstraction, virtualizes the
hardware interfaces, and establishes ownership of files.

Layering and Partitioning The system is structured into two
layers: the kernel and the commands. Following the Layers
pattern [71, p. 33], the commands call the kernel, but the
kernel does not depend on the commands. Furthermore, the
commands adhere to the principle of low coupling: the code
of each command is not coupled to code in other commands.
This partitioning is established through a file naming con-
vention: file names starting with the same sequence (e.g. ed
for ed1.s and ed2.s) belong to the same partition.

System Call The transfer of control between the user
programs and the kernel is implemented through special
connectors: system calls. The kernel source code files define
3513 labels whose name starts with a period. These are the
names of system call entry points. A subset of 28™ labels
are grouped in a table,** which allows them to be called
from user programs using the sys instruction (some labels,
such as those for low-level disk access, are not exported.)
In the Second Edition manual we find the system calls
documented in a dedicated section (1) of the manual.

Interpreter At least two system commands ind (indentation)
and [case (lower case conversion) are written in a (relatively)
high-level language, namely B. This is implemented with a
threaded code interpreter [90].

Monolithic Implementation The kernel is structured as
nine assembly-language files (s1.s — s9.s) lacking easily dis-
cernible decomposition and partitioning. The same is also
observed for the editor ed, which consists of two similarly
named files (ed1.s and ed2.s).

Process Management The kernel can create an indepen-
dently scheduled copy of a running process through the
easily-implementable fork system call,*® which is named
and modeled after Melvin Conway’s fork and join proposed
multitasking primitives [91]. The replacement of the running
process copy with another program through the exec system
call was not implemented at the time. Instead, the shell
overlays the running code by reading the code of the other
process from the disk, and then transfers execution to its
entry point with a jump instruction [55], [59].

By the First Research Edition, the process management
interface had evolved into four system calls that define
the way processes: are created—fork(11), have their code

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, AUGUST

Language-Independent APl
User Groups
Structured Programming in a High-Level Language
Pipes and Filters
oftware Library
Mountable Filesystem Interface
Interoperability through Documented File Formats Internet Pre
Tree Directory Structure I(Kernel performance tuning)
[The Shell as a User Program Optimized Screen Handling
User-Contributed Tools and Games Regular Expression Library
[Generic File 1/0 Layer |Virtual Memory Paging

I(Network performance tuning)
Pseudo-Terminal Driver
Network and User Database Access
Directory Processing Abstraction

tocol Family

Local and Remote Interprocess Communication

2017

ails
OpenssL Framework
|Graph-based Kernel Networking and User Library
ICommon Access Method 1/O Subsystem
Linux Emulation

Fccess Control Lists

Network Blacklisting

JAbstraction of Standard 1/0 Filesystem Directory Hierarchy Packet Capture Library Virtual Machine Monitor|
Binary-Code API Domain-Specific Languages| Generic System Control Interface Fast User Space Raw Packet Processing|
System Calls Language Development Tools Stackable Filesystems Application Compartmentalization|
Devices as Files Environment Variables Dynamically Loadable Kernel Modules InfiniBand Support
Separation of File Metadata from File Naming Static Analysis Process Filesystem Para-virtualized 1/0
Descriptor Management Dynamic Memory Allocation |Package Manager |Dynamic Tracins
Process Management Unix as a Virtual Machine |Organized C Contribution: |Zettabyte F\\esystem?
Monolithic Implementation ISoftware Packages IStream 1/0 Functions |Basic Security Module Auditing
Layering and Partitioning |Portable C Library Database Access Methods Miniport Driver Wrapper
[System Call ICommand Files, Virtual Filesystem Interface Streaming Archive Access Library
interpreter Buffer Cache Kernel Packet Forwarding Database Pluggable Authentication Module
Fi Device Driver Abstraction [Timezone Handling Ig I Mandatory Access Control
File 1/0 Dynamic Resource Management Third-Party Software Contributions Modular Disk 1/0 Request Transformation Framework
Kernel Data Structure Definition Reuse Multlr\e CPU Architecture Support Symmetric Multiprocessing
oL L : — L LU T
1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016
fUR T |) ! ! f R T) ! ! 1 ! o T P A) (T S M Ty R Ty B L T
‘PDPJ Unix ‘ Sixth Research Ed. ‘4.IBSD ‘4.3BSD Tahoe ‘ 4.4BSD FreeBSD 5.3 ‘ ‘ FreeBSD 11.0i
First Research Ed. 1BSD 4.285D |4.385D Reno |FreeBsp 2.1 |Freessp 6.2
econd Research Ed. Seventh Research Ed. 4.3BSD 4.3BSD Net/2 FreeBSD 3.0 ‘FreeBSD 7.0
[Third Research Ed. 385D 38685D Patch kit [FreessD 3.4 [Freessp 7.1
[Fourth Research Ed. [48sD FreeBsD 1.1 |Freessp 4.0 FreeBSD 9.0
[Fifth Research Ed. IFree8sD 2.0 FreeBSD 5.0 [Freessp 10.0

Fig. 1. Timeline of Unix’s major releases and architectural design decisions

loaded—exec(11), are terminated—exit(11), and are monitored
for termination—wait(11). This basic model has been stan-
dardized under POSIX [92] and survives until today. The
split of a new process creation from the loading of the
corresponding code may seem like a peculiar architectural
choice, because its benefits (the ability to create an identical
sibling of an existing process) are small; typically a call
to fork is immediately followed by one to exec. The reason
behind this choice seems to be historical. Given the existence
of the fork system call, it was easier to add an exec call than
to create from scratch a call that would combine the two.

Descriptor Management The kernel provides 170 function-
ality, such as read and write, through special connectors, the
file descriptor handles; these are small integers that map 1/0
calls to the underlying file or device. The kernel fget>* and
fput® routines provide a bare-bones interface for obtaining
and disposing file descriptors to other kernel system calls
(e.g. creat,® open,%” seek®).

Separation of File Metadata from File Naming The PDP-7
kernel separates a file’s metadata (user-id, size, disk block
locations, number of links) from the file’s directory name by
introducing the concept of a file information node (inode;
see Listing 1). A function (namei®) can obtain the inode
associated with a path name, while other functions (iget>!°
and iput>'!) deal with open files through their inodes. This
elegant connector simplifies many file administration tasks.

Devices as Files The kernel follows the virtualization prin-
ciple by abstracting devices, such as the console, the second
terminal, and the paper tape drive, into files that are acces-
sible via the file system’s system directory? (/dev in later
versions). This type of binding, allows arbitrary programs
to communicate with any device.

File I/O A simple yet powerful interface, based on the sys-
tem calls open,>' read,S™* write,S'> seek,5° tell, SV and close,5'®
allows programs to access files as a flat sequence of bytes in
both sequential and random access fashion. This interface
has survived until today, both as Unix system calls and as
the 1/0 API in popular programming languages.

Filesystem Four system calls allow the manipulation of
files within the filesystem: creat,5'® rename, 5 link,5?' and
unlink.5?* All have survived until today. The functionality
of the creat system call has been usurped in a generalized
form by open.5?® Furthermore, the system calls rename, link,
and unlink were extended in 2008 with siblings that work
on file descriptors in order to avoid race conditions.5** Note
that this problem could not have been foreseen, because
directory support did not exist at the time.

4.2 First Research Edition

The First Research Edition (November 3, 1971°) was a
rewrite of the PDP-7 Unix targeting the PDP-11 processor.
The following architectural design decisions are visible in
this edition. Note that, the shell-related design decisions
may have also been available in the PDP-7 edition, but the
corresponding shell does not seem to have survived in order
to study their implementation.

System Calls Although the first edition Unix was a com-
plete rewrite of PDP-7 Unix, it retained a large number of the
defined system calls, thus establishing the core architecture
of the Unix system call interface. Specifically, from the
286 gystem calls implemented in the PDP-7 version®?® and
the 3417 calls implemented in the First Edition,5% 188 are
common between the two:'° chdir, chmod, chown, close, creat,
exit, fork, getuid, link, open, read, rele, seek, setuid, tell, time,
unlink, write. More impressively, from the 341% system calls
implemented in the First edition, 181 have also survived
in the modern FreeBsD-11.0.1 version:3¥-X2 chdir, chmod,
chown, close, creat, fork, fstat, getuid, link, mkdir, mount, open,
read, setuid, stat, unlink, wait, write.

Binary-Code API At the CPU level, system calls are typically
dispatched through a memory address vector containing
the location of the code implementing each call. At the
programming level, system calls are referred to by names,
such as open or exec. Rather than dynamically allocating
system call names to entries in this table, the First Edition

6. The dates provided here are given by Salus [77, p. 43].

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, AUGUST 2017 7

Listing 2. System calls 0—10 defined in the 1971 First Edition Unix
sysrele / 0
sysexit / 1
sysfork / 2
sysread / 3
syswrite / 4
sysopen / 5
sysclose / 6
syswait / 7
syscreat / 8
syslink / 9
sysunlink / 10

Listing 3. System calls 0—10 defined in the 2016 FreeBSD-11.0.1
0 { int nosys(void); } syscall nosys_args int
1 { void sys_exit(int rval); } exit
sys_exit_args void
2 { int fork(void); }
3 { ssize_t read(int fd, void *buf,
size_t nbyte); }
4 { ssize_t write(int fd, const void xbuf,
size_t nbyte); }
{ int open(char *path, int flags, int mode); }
{ int close(int fd); }
7 { int waitd(int pid, int *status,
int options, struct rusage xrusage); }
8 { int creat(char xpath, int mode); }
9 { int link(char path, char link); }
10 { int unlink(char xpath); }

o Gl

established a numbering scheme to place system calls in
stable positions within the table. This allows Unix systems
to maintain binary API compatibility of compiled programs
between successive releases and even between different im-
plementations, such as Linux, without requiring expensive
adaptation layers. As can be seen from system calls defined
in the 1971 First Edition® (Listing 2M'%) and the correspond-
ing calls defined in the 2016 FreeBsD-11.0.15% (Listing 311%)
the established numbering scheme persists until today.

Abstraction of Standard I/O The First Edition shell offers
the ability to associate user-specified files in the place of the
program’s standard input and standard output, through the
corresponding 1/0 redirection symbols (< and >). This fol-
lows the virtualization principle by abstracting a program’s
standard 1/0 away from the terminal, allowing programs
to operate on arbitrary files. The design decision is imple-
mented by closing the default input or output file descriptor
(typically associated with the terminal) and opening it again
to associate it with the specified file.5*

Generic File I/O Layer Over a number of successive releases
we see the evolution of a layer between the read and write
system calls and the device drivers [50]. This handles read
(readi®*') and write (writei®?) through an inode, read /write
functionality common to both (rdwr®®), as well as the map-

ping of data to disk blocks (bmap>**).

User-Contributed Tools and Games The First Edition man-
ual contains a section (VI) documenting “User Maintained

TABLE 2
Documented file formats and their users in the First and Second (*)
Research Edition

Format Description Clients
a.out Assembler and linker as, ld, strip, nm, un
output
Archive Object code libraries ar, 1d
Core Crashed program Kernel, db
image
Directory Filesystem directories du, find, Is, In, mkdir,
rmdir
Filesystem Filesystem format check, dump,*mkfs,
restor’
Password User accounts and chown, find,
passwords getpw, login,"ls,
passwd”
Tape’ DECtape file format mt, tap’
utmp Logged in users init, login,"who," write’
wtmp’ Users login history acct, date, init, login,

tacct, who

Programs”. Amazingly, this happened decades before open
source operating system distributions, such as Debian and
FreeBsD, started organizing third-party code contributions
in the form of so-called “packages” or “ports”. Operating
systems by definition host user-written code. The architec-
tural significance of this First Edition design decision is
that the user-maintained components are documented in
the system’s manual, and are installed in a system-wide
visible directory (typically /usr/bin—user binaries) rather
than in the authors” home directories. This method supports
a lightweight method for users to contribute code to the
system, which can later mature to become an officially
supported part of it.

The First Edition user-contributed programs included
programming languages (basic), games (bj—black jack, chess,
moo, ttt—tic-tac-toe), tools (das—disassembler), peripheral
interfacing (dli, dpt—load DEC paper tapes), and nowa-
days familiar utilities (cal, sort). Documenting the user-
contributed software was enforced through an interesting
technical measure: a scheduled (cron) job would remove
software that lacked up-to-date manual pages [80]. Cur-
rently, section VI of the Unix manual documents games,
while some tools documented in the First Edition are now
standardized Unix user commands. Third parties can still
contribute code to Unix distributions through their ports or
packages mechanisms.

The Shell as a User Program The documentation of the
password file—passwd(V)—details that each record’s fifth
field contains the program to use as the shell. This allows
arbitrary components to be specified as the ones with which
a logged in user will interact; an editor for clerical staff and
games were given as examples [36].

Interoperability through Documented File Formats Sec-
tion v of the First Edition manual documents nine file
formats. These act as connectors, allowing diverse programs
to interoperate through an external coupling mechanism by
reading and writing the corresponding files. Two more were
added in the Second Edition, and more continued to be
added in future editions. File formats used by more than
one program are listed in Table 2. The files demonstrate two
of the system’s architectural principles: using flat files rather

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, AUGUST 2017 8

than elaborate file structures, and adhering to conventions
(use of documented formats) rather than implementing
complex enforcement mechanisms (e.g. APIs).

Tree Directory Structure Two system calls, mkdir(1l) and
chdir(11), provide the interface used for creating a new file
directory and for establishing a directory as the current one.
Other elements required for creating a tree directory struc-
ture are established by convention, which minimizes archi-
tectural complexity. Specifically, directories are plain files
containing file entries in a known documented format—
directory(V). In addition, two directory entries with special
names, “.” and “..”, point to the current and parent
directory respectively. A number of commands provide the
required user-level support: chdir(l), find(1), In(1), Is(1), stat(1),
mkdir(1), mu(1), rm(1), and rmdir(1). They perform administra-
tive chores and enforce restrictions by operating directly on
the directory data.

2

Mountable Filesystem Interface Two system calls, mount(I)
and umount(I), and two administrator programs with the
same name provide an interface for connecting storage units
containing filesystems to abritrary points of the directory
structure. Its existence supports a single tree-structured
name space for all files, hiding from users and programs
the complexity and ugliness of “drives” or “devices”. It also
guided by example the philosophy of using a single consis-
tent naming scheme for all files, which proved important as
the system evolved.

4.3 Second Research Edition

The Second Edition (June 12, 1972) source code has only
survived as a few system utility program fragments, which
were recovered from a subset of a disk dump’s DECtapes.
Fortunately, this edition’s manual survived as a printed doc-
ument and provided the basis for this section’s observations
of architectural evolution.

Software Library The Second Edition manual contains a
section (III) documenting 23 “subroutines”, with a consid-
erably wider scope than the few documented in the First
Edition. These components mainly consist of a floating point
math emulator, trigonometric, logarithmic, and conversion
math functions, buffered 170, memory management, sorting,
and string processing. More than half (14) of them have
survived as functions with the same name and functionality
in the modern C library: afan(111), atof(I11), atoi(111), ctime(11I),
cos(111), exp(111), getc(111), hypot(111), itoa(111), log(111), putc(IlI),
gsort(111), sin(111), and sqrt(111). Their survival showcases the
power of well-chosen abstractions.

4.4 Third Research Edition

The Third Edition (February 1973) is available through
its manual pages—14982™'° lines of troff code—and the C
compiler—2 7511 lines of C code.

Pipes and Filters This pattern was introduced in the Third
Edition [77, p. 50], but the corresponding kernel assembly
code has not survived. Even in the C source code of the
Fourth Edition kernel the pipe system call is only a stub redi-
recting to the nosys system call entry point. It seems prob-
able that the corresponding system call was implemented in

the assembly version of the kernel, which coexisted with it,
and the C version had not caught up. However, the Third
Edition manual documents the pipe system call’®® and the
construction of pipelines through the shell.5% (The syntax
used for pipelines was at the time different from the current
one.) Furthermore, the interface to diverse commands was
changed overnight to allow them to run as filters, ie.,
receive input from another process through their standard
input stream and provide their output to another process
through their standard output stream [75]. For example, the
cat, od, pr, and sort commands are documented in the Second
Edition manual with a mandatory input file argument. In
the corresponding Third Edition manual pages, the file
argument is optional—when missing the commands pro-
cess their standard input. Moreover, the documentation of
numerous commands—crypt(1), hyphen(1), od(1), opr(1), ov(1),
pr(1), sort(l)—explicitly states that they can be used as a filter.

4.5 Fourth Research Edition

The Fourth Edition (November 1973) is available through
its manual pages—18975""7 lines of troff code—and the
kernel—7 1418 lines of which just 768" are written in
PDP-11 assembly and the rest are written in C. Interestingly,
the kernel exhibits a division of effort on architectural
boundaries: Ken Thompson (ken) appears to have worked
more on the main part of the kernel % while Dennis Ritchie
(dmr) appears to have mainly worked on device drivers.53

Structured Programming in a High-Level Language The
rewriting of the system kernel from PDP-11 assembly lan-
guage in a high-level language that later became C (at the
time it was known as “new B”) imposed discipline in the
scoping of identifiers. This increased the kernel’s modularity
by allowing the definition of small (on average about 17.9%%°
lines long) functions. Thus, the Fourth Edition kernel defines
105! C functions and 50?2 assembly language symbols.
Contrast these numbers with the 200" (global) symbols
defined in the PDP-7 kernel and the 248** symbols defined
in the First Edition (PDP-11) kernel.

User Groups The kernel introduces user groups and two
system calls to manage them: getgid(1I) and setgid(11). A few
commands such as chmod(1) and Is(I) are correspondingly
adjusted, and file permissions are extended to include group
ones in addition to the existing ‘owner” and ‘others’ settings.
Despite its spartan interface, the concept is extremely pow-
erful. Coupled with group ownership of files (which include
devices mapped to the filesystem name space), permissions
associated with a file’s group, and the ability to have pro-
grams assume the identity of a specified group, it allows
the administrative control of resource access according to
a user’s group and action. For example, appropriate group
permissions can provide all operators tape and disk drive
access for backup purposes, without requiring a complex
access control list to be associated with each corresponding
device. The concept is an elegant case of solving a problem
by adding another level of indirection.

Language-Independent API The gradual implementation
of the system in a high-level language necessitated an API
that would be compatible with both assembly language
code and code written in C. Consequently, the system

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, AUGUST 2017 9

NAME

pipe — create a pipe
SYNOPSIS

(pipe = 42.)

sys pipe

(read file descriptor in r0)
(write file descriptor in rl)

pipe(fildes)
int fildes[2];

Fig. 2. The pipe(11) system call interface documented both for assembly
language (using registers r0 and r7) and for C callers

calls are provided and documented through an API that is
callable from both languages—an example can be seen in
Figure 2. Such mechanisms supporting language coexistence
under the same roof were later extended to cover Fortran
and Pascal, and nowadays serve diverse languages ranging
from Java and Go to JavaScript and Python.

Data Structure Definition Reuse The kernel contains in
its top level directory 12 C header files that are used in
1652 instances by 35?7 kernel source code files. (Regard-
ing header adoption by user-space programs the—closest
available—Fifth Edition source code has 17-%® instances of
header file use in 13 files.) Header files provide a shared
mechanism for communicating through reused data struc-
tures, something that in the past was performed simply by
copying the data structure’s definition from a manual into
the code of each program. The use of header files allows the
evolution of data structures by the addition of fields and
changes to their types. This in turn can be used to promote
portability, through the use of types that are appropriate for
each CPU architecture.

Dynamic Resource Management Two routines, malloc>®

and mfree*0 are introduced to manage the dynamic allo-
cation and release of main memory blocks for in-memory
processes and of continuous disk swap area blocks for
swapped-out processes. Through these routines both alloca-
tions reuse the same underlying data structure, a map. Each
of the two maps (coremap>*! and swapmap>*?) is an array of
structures containing the position and size of each allocated
block [60, p. 5-1].

Device Driver Abstraction The manual documents in sec-
tion 1V 16 “special files”, which are located under the /dev
directory. These correspond to diverse devices, including the
cat(1V) phototypesetter interface, the da(1v) voice response
unit, the dc(Iv) data-phone interface, the kI(IvV) console
typewriter, the pc(Iv) paper tape reader/punch, the tm(1v)
magnetic tape interface, and various disk drive types. These
files are implemented by device drivers.5*

At the kernel level each character device driver pro-
vides through the cdevsw table what we would call today
an object-oriented interface with five methods:5* d_open,
d_close, d_read, d_write, and d_sgtyy. Block de-
vices provide through the similar bdevsw interface three
functions: d_open, d_close, and d_strategy. These
functions have mostly obvious semantics, transforming
hardware-agnostic 1/0 requests into the protocol required
by the corresponding devices. The d_strategy function
is responsible for queuing read and write requests and

the d_sgtty function for getting and setting a terminal’s
speed and processing flags. This standardized interface
hides device-specific hardware intricacies from the rest of
the kernel and from user level programs, thus virtualizing
the underlying devices. In a departure from this modular
interface, the interrupt functions associated with the devices
are directly hard-coded in the interrupt table.5*°

Remarkably, both the cdevsw and the bdevsw interface
(renamed into devsw), extended with a few more functions
still exist in modern versions of Unix, demonstrating the
design’s enduring relevance and utility.5¢-54

Buffer Cache The buffer cache®*® stores in main memory
a copy of data read from or written to secondary storage.
This bridges the performance gap between the high-latency
secondary storage and the lower-latency main memory.
Offered as a service to all block device 1/0, it improves the
performance of both kernel and user-process disk 1/0, at the
expense of complicating the maintenance of consistent disk
structures.

The buffer cache is another pattern that has persisted
through time to the current version FreeBsD-11, even down
to the names of three buffer structure flags.5/5%

4.6 Fifth Research Edition

The surviving Fifth Edition (June 1974) is only missing the
source markup of the manual pages. This edition was offi-
cially made available to universities for educational use [93,
p- 8l

Command Files Already from the Second Edition the shell
documents its ability to run with the name of a file con-
taining commands as an argument. In the Fifth Edition
we see four files containing such sequences of commands.
These are used to configure the system at boot time, ! to
update the C-compiler’s archive containing nonce-language
expression template tables,*? to compile, link, and install
diverse system files,%>** and to create the manual’s table
of contents and index.5% At just 69' lines the amount of
code embedded into these files is very modest. However,
this use marks the beginning of scripting in Unix, which
will later become a dominant paradigm.

4.7 Sixth Research Edition

The Sixth Edition (May 1975), is the first that became widely
available outside Bell Labs through licenses to commercial
and government users. John Lions studied and documented
the kernel’s structure as material for teaching two operating
systems courses at the University of New South Wales in
Australia in 1977 [60].

Portable C Library A library>> of routines implemented in
the C programming language is provided with the explicit
goal to improve portability among the three operating sys-
tems on which the language was made available: PDP 11
Unix, Honeywell 6000 GCOS, and 1BM 370 OS. The library
implements in C, functionality that was at the time coded
in assembly language, such as the formatted printing>’-5%®
and dynamic memory allocation.55 In the Sixth Edition
release it seems that both the portable library and the origi-
nal routines coexisted, and that Unix tools relied on the as-
sembly language routines. Some routines—e.g. printf(111)—
were offered as plug-compatible alternatives, while other

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, AUGUST 2017 10

functionality (e.g. memory allocation) was provided using
different interfaces. Over time the portable C library influ-
enced the design and implementation of the Unix C library.
The modern standard C library defines both routines stem-
ming from the original assembly language implementation
and those, such as systerm(3), that were introduced by the
portable library version.

4.8 Seventh Research Edition

The Seventh Edition (January 1979), includes many new
influential commands, and is the version that was widely
ported to other processor architectures.

Unix as a Virtual Machine Early problems in porting pro-
grams written in C between diverse operating systems [54,
p- 2025] convinced Dennis Ritchie that it would be easier to
port the operating system between diverse hosts than to port
the application programs between operating systems [81].
An Interdata 8/32 computer was purchased and used to
prove this point. The project involved

o the implementation of a C compiler whose code
generation part could be adapted for various CPU
architectures [94];

o the extension of the C programming language to aid
the portability of code written in it;

o the abstraction through libraries and header file def-
initions of elements that varied between different
machines; and

o the identification, revision, and isolation of the ker-
nel’s machine dependent parts from the bulk (95%)
of the code that could remain the same across all
systems [54].

Dynamic Memory Allocation A main memory allocator,
malloc(3) is offered as part of the C library. It allows pro-
grams to dynamically allocate memory space for storing
data, rather than reserve fixed amounts of space. The void
filled by it, is evident by its rapid and widespread adop-
tion. It is directly used by 26 user-mode programs (out of
about 160) and also in the implementation of other library
functions, namely by the standard 1/0 and by the multiple
precision arithmetic libraries.

Static Analysis A dedicated program, lint(1) [25], is offered
to check C code for issues that are not caught by the C
compiler. It performs strict type checking, detects potential
portability problems, and identifies error-prone or wasteful
constructs. Static program fault analysis was, and still is, a
resource-demanding and imprecise task. Implementing it as
a separate program frees the compiler from its demands and
also provides an isolated experimentation venue that cannot
easily disrupt the day-to-day development of production
code.

Environment Variables The kernel 56! the shell %2 and the
C library®® act in concert to support environment variables—
environ(5). These allow an array of arbitrary strings (by
convention key-value pairs) to be passed down the process
invocation tree, thus establishing a simple, low-overhead,
open-ended, one-directional, parameter-passing connector.
Environment variables appear in the shell as ordinary vari-
ables, and can be accessed in C code with a single func-
tion call—getenv(3). By being part of a process’s operating-
system context data, they are inherited down to arbitrary

levels of process invocation, without requiring any coordi-
nation with intermediate layers.

An important environment variable is PATH, which spec-
ifies a list of directory paths where the shell looks for
executable programs. Changing these paths allows end-
users to extend or substitute the programs supplied by the
operating system. End-user operating-system configuration
was later extended to other areas, including the location
of manual pages (MANPATH) and dynamically linked li-
braries (LD_RUN_PATH) as well as the filesystem hirearchy—
chroot(2). This line of evolution culminated into the mod-
ern operating-system-level virtualization systems, such as
Linux kernel name spaces and control groups, FreeBsD Jails,
and Solaris Zones.

Language Development Tools The lexical analyzer gener-
ator, lex(1) [29], introduced in the Seventh Edition comple-
ments the parser generator, yacc(1) [28], already present in
the Sixth Edition. Together these two offer the basis for
constructing programming language front ends [95]. This
significantly simplifies the implementation of a program-
ming language parser to a task achievable by a competent
programmer rather than an expert on automata theory. The
utility of this approach is exemplified by the existence of
twelve tools whose grammar is written in yacc: awk(1),
be(1), epp(1), egrep(1), eqn(1), lex(1), m4(1), make(1), pce(1),5%*
neqn(1), and struct(1). Through the availability of compiler
tools, the implementation of many complex facilities is ab-
stracted into the development of a domain-specific language
which acts as a platform for solving the corresponding
problem.

Domain-Specific Languages Aided by the availability of
compiler tools, several tools based on little or domain-
specific languages [96], [97], [98] support a variety of generic
processing tasks in a way that allows end-users to write
specialized code in order to achieve their particular goals.
Tools introduced in the Seventh Edition include the Bourne
shell [84], [99]—sh(1), awk(1) for processing field-oriented
records [100], sed(1) for manipulating plain-text files [101],
find(1) for filesystem hierarchy traversals, expr(1) and bc(1)
for evaluating expressions, egrep(1) for finding lines that
match an extended regular expression, m4(1) for perform-
ing macro processing [102], and make(1) for maintaining
program dependencies [103]. Some of the languages, such
as those employed by find, expr, and egrep are fairly basic,
and code written in them rarely spans more than a single
line. The rest are more sophisticated, and some have been
occasionally (mis-)used to build large applications.

Filesystem Directory Hierarchy The documented layout—
hier(7)—for the filesystem hierarchy specifies the role and
contents of 514! directories. The structure has remained
mostly stable over the years. It has even been adopted
and standardized by the Linux community, in the form of
the Filesystem Hierarchy Standard. The documented structure
offers another example of establishing flexible conventions
over implementing rigid enforcement mechanisms. It also
demonstrates the formalization of a structure that evolved
organically over the years. Although the directory hierarchy
changed a lot before the Seventh Edition, as the Unix team
experimented with various layouts, it stabilized after it was
documented and evolved only gradually. An example of an

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, AUGUST 2017 11

early change is that the /usr directory was initially used for
user programs, but was later repurposed to denote a general
purpose directory, typically residing on a large mounted
filesystem. Significant developments after the Seventh Edi-
tion include the addition of the /home directory for user
files and the /var directory for system files that change
while the system is running. Importantly, the documented
hierarchy contains all parts of a self-hosted system: source
code, development tools, libraries, and documentation.

4.9 First and Second Berkeley Software Distributions

The first Berkeley Software Distribution (BSD), released in
early 1978, contained the Berkeley Pascal System [104], the
ex line editor [105], and a number of tools. The Second
Berkeley Software Distribution (2BSD), included the full-
screen editor vi [106], the associated terminal capability
database and management library termcap, and many more
tools, such as the csh shell [107].

Software Packages The two Berkeley distributions intro-
duced to the user community third-party software packages
targeting Unix. Over the years packages proliferated and
got distributed, initially through USENET [108, pp. 958-959]
newsgroups and later over the internet in the form of ports
to a specific operating system distribution. The established
filesystem directory hierarchy, provided a template for lay-
ing out the source code, the documentation, and the manual
pages. In addition, the use of make(1) provided a common
way for expressing compilation and deployment rules. In
total 2BSD came with 3212 makefiles.

410 3BSD

The 3BSD release, which came out in late 1979, extended
Unix 32V, a direct port of the Seventh Edition Unix to the
DEC/VAX architecture, with support for virtual memory and
the 2BSD additions.

Virtual Memory Paging The virtual memory (VM) [42]
subsystem is a major component introduced in the 3BSD
kernel, comprising 17% of the main kernel code (2808 out
of 16039 C source code lines).5 It is delineated from the
rest of the kernel code, by having its eleven source code
files begin with a unique prefix (vm), a method followed by
other elements in future releases.

The VM system primarily supports allocating memory to
processes when no free main memory is available by swap-
ping out suitable VM pages to disk (paging). In addition,
new forms of the read(2), write(2), and fork(2) system calls are
provided, which utilize VM for performing the 1/0—uvread(2)
and vwrite(2)—and for reusing a process’s memory space—
vfork(2). This violation of abstraction proved to be a short-
lived experiment. Subsequent releases abstracted the use
of VM by the common I/0O routines—read(2) and write(2)—
removing the need to call separate routines in order to
benefit from VM capabilities. Furthermore, the use of vfork(2)
is discouraged in modern FreeBSD versions.

411 4BSD

The 4BSD release (October 1980) was developed by the
newly established Computer Systems Research Group

working on a contract for the Defense Advanced Research
Projects Agency (DARPA). The contract aimed at standardiz-
ing, at the operating system level through the adoption of
Unix, the computing environment used by DARPA’s research
centers [77, p. 159-160]. The release included a 1k block
filesystem, support for the VAX-11/750, enhanced email, job
control, and new signal semantics that addressed existing
race conditions—the so-called reliable signals [109, pp. 270-
283].

Regular Expression Library Regular expressions feature
prominently in numerous Unix tools, such as ed(1), grep(1),
egrep(1), awk(1), sed(1), and expr(1). Consequently, support-
ing the corresponding functionality as part of the C library—
regex(3)—is an obvious design decision. The provision of the
regular expression library in 4BSD is an important enhance-
ment, foreshadowing the widespread support for regular
expressions in most modern programming languages.

However, the regular expression library’s development
took time and its adoption was lackluster. Initially, each
tool had its own regular expression engine.56-567,568,569,570
The reason for this may have been incompatibilities be-
tween the regular expressions processed by diverse tools,
primitive support for libraries, or tool owners too fond of
their own regular expression implementation to demand a
common library [110]. Even when the library was provided,
few programs adopted it. In 4BSD only a single program,
more(1), made use of the library.5! By 4.3BSD (1986) just
two more (new) programs were using it: dbx(1) and rdist(1).
The reason for this slow-paced adoption may be that BSD
Unix developers did not feel owners of the tools and code
developed at Bell Labs. By the release of FreeBsD 11.0
(2016) the situation had changed, and four of the tools
referred in the preceding paragraph—ed(1), grep(1), sed(1),
and expr(1)—were rewritten as open source software, and
used the contemporary version of the regular expression
library.

Optimized Screen Handling The curses(3) library addresses
the problem of placing characters on arbitrary positions
of diverse incompatible terminal displays over a low-
bandwidth connection. Cursor-addressable displays used to
require different, incompatible, escape sequences for per-
forming tasks such as clearing the screen, using a high-
lighted font, or placing the cursor in a specific screen po-
sition. Moreover, refreshing an entire screen sized 80 x 24
characters over a 300-1200 baud serial terminal connection
can take a long time. Consequently, for the sake of efficiency,
usable screen content must be preserved and only content
differences should be sent down the line. To solve these
problems the curses library abstracts the character escape
sequences required to manipulate cursor-addressable ter-
minals into a set of C library routines and a database—
termcap(5)—that stores the sequences associated with each
terminal type. The library also optimizes the display’s up-
dates by mirroring its content in internal data structures and
using those data to minimize the transmitted data.

Modern command-line interfaces work on terminal em-
ulators running on bitmap displays with high-bandwidth
connections, and almost all emulators are standardized to
follow the X Window System xterm escape sequences. Thus,
none of the original requirements associated with the curses

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, AUGUST 2017 12

TABLE 3
Uses of the socket APl in 4.2BSD
System call Uses
bind 23
connect 15
accept 13
select 12
listen 11
sendto 10
shutdown 9
recvfrom 8
getsockname 6
recv 2
send 2
sendmsg 1
getsockopt 0
recvmsg 0
socketpair 0

library hold today. However, the library is still used to main-
tain the functionality of programs designed for completely
different hardware.

412 4.2BSD

The 4.2BSD release (September 1983) was based on a de-
sign described in an architecture manual written by Bill
Joy and his colleagues [111]. It included many important
features delivered in 4.1BSD and three more informal interim
releases [78]: 4.1BSD (performance improvements); 4.1aBSD
(TCP /1P networking and networking tools); 4.1bBSD (Berke-
ley Fast Filesystem [43] and symbolic links); and 4.1cBSD
(new signal code). Compared to the pre-releases, the final
release improved networking support and added new sig-
nal facilities and disk quotas.

Internet Protocol Family Support for the internet protocol
family was arguably one of the most influential Unix de-
sign decisions that appeared in the second decade of the
system’s life. With 6586"% lines of code implementing five
protocols (ARP, IP, TCP, UDP, and ICMP) the effort appears
very modest by today’s standards. This protocol stack was
widely used as a reference implementation in routers and
other operating systems. From an architectural perspective,
the decision to implement this functionality in the kernel
rather than as a user space program (as was e.g. the case for
the KA9Q implementation [112]) may have contributed to
the performance, standardization, and widespread adoption
of these protocols and the corresponding implementation.

Local and Remote Interprocess Communication Both lo-
cal and remote bidirectional interprocess communication
(1IPC) between arbitrary processes is established through the,
now ubiquitous, socket(2) API for setting up and accepting
network connections. In earlier versions IPC was mainly
implemented through the pipe(2) system call realization
of the corresponding pattern. This establishes only a one-
directional communication path between processes of a
common ancestor.

In contrast to the parsimony of earlier Unix system call
additions the new API is based on a plethora of new system
calls (Table 3%*). There are arguments to be made for and
against shoehorning new facilities on existing system calls,
as could be done in this case by reusing the open(2), read(2),
write(2), and close(2) API. Reusing or improving an existing

API reduces the system’s API surface and the associated
learning curve, but can also negatively affect the compatibil-
ity of existing code, runtime performance, and the API's ease
of use. Certainly however, the exhibited profligacy marks
a departure of architectural style from the parsimony of
earlier Unix editions.

The sockets API is used in the 4.2BSD release by two
library functions—remd(3X) and rexec(3X); eleven system
daemons—comsat(8C), ftpd(8C), gettable(8C), implogd(8C),
rexecd(8C), rlogind(8C), af(8C), rshd(8C), rwhod(8C), tel-
netd(8C), and tftpd(8C); and eight user-mode programs—
ftp(1c), rlogin(1C), rsh(1C), talk(1C), telnet(1C), tftp(1C),
whois(1C), and sendmail(1C). Based on the, sometimes small,
number of the provided system calls uses in client code
(Table 3) one could claim that the provided API was over-
engineered.

Also, in retrospect, the abstraction from the TCP protocol
to stream sockets and from the UDP protocol to datagram
sockets was another instance of over-engineering, because
for decades mainstream systems maintained a one-to-one
relationship between the two protocols and the correspond-
ing abstractions. However, the proliferation and evolution
of networking protocols at that time forced the networking
stack’s designers to adopt the abstraction as a precaution
for other evolutionary avenues. This is expressed in a Caveat
section in the inet(4F) manual page.

“The Internet protocol support is subject to
change as the Internet protocols develop. Users
should not depend on details of the current im-
plementation, but rather the services exported.”

Directory Processing Abstraction Three new system
calls—mkdir(2), rename(2), rmdir(2)—and the directory(3) ac-
cess library comprising the opendir(3), readdir(3), telldir(3),
seekdir(3), and closedir(3) functions—individually docu-
mented in 4.3BSD—abstract the processing of directory en-
tries. Before the introduction of this feature, directory oper-
ations were performed by directly accessing and manipulat-
ing the contents of the corresponding disk structures. This
abstraction promotes innovation in filesystem design, such
as the long file names introducted with the Berkeley Fast
Filesystem [43].

Network and User Database Access A series of library
functions provide an interface for accessing entries stored
in the filesystem table—getfsent(3x), the user group file—
getgrent(3), the hosts database—gethostent(3N), the net-
works database—getnetent(3N), the protocols database—
getprotoent(3N), the user details file—getpwent(3), and the
network services database—getservent(3N). Abstracting this
functionality into reusable libraries reduces code duplica-
tion, errors, incompatibilities, and also makes programs
using this functionality easy to adapt in the future. For
example, in modern FreeBSD the same routines can be
configured—via the nsswitch.conf(5) file—to provide data:
from local files (as was the case in the original implementa-
tions), from a local key/value database, from the Internet
Domain Name System, from NIS/YP servers, or from a
caching daemon.

Pseudo-Terminal Driver The pseudo-terminal driver—
pty(4)—allows the creation of software-controlled terminal-
like devices. These appear as a pair of master-slave devices.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, AUGUST 2017 13

A process, such as a shell or an editor, attached to the slave
end has the illusion of working on a physical terminal.
However its 1/0 does not come from an actual terminal, but
from another process controlling the master end. Through
this connector mechanism arbitrary user processes can cre-
ate virtual terminals that can be used by other processes
without any prior arrangement or adjustment. The facility is
used in 4.2BSD by the remote login daemon—rlogind(8), the
(similar) telnet daemon—telnetd(8), and the terminal session
typescript program—script(1).

4.13 4.3BSD Tahoe

The 4.3BsD Tahoe release (June 1988) supported the CCI
Power 6/32 minicomputer (code-name Tahoe) and improved
TCP algorithms.

Multiple CPU Architecture Support The kernel is split into
machine-dependent and machine-independent parts. The
machine-dependent parts support the original vax%’? archi-
tecture and the new Tahoe%” architecture. The split places
code for interfaces,>* system configuration, > and boot-
ing™® into separate directories. In total from the 218 7831%
lines of the system’s kernel source code, 104279 lines
reside in the vax directories and 4211217 reside in the
tahoe directories. Thus, a significant part of the kernel code
(72392 lines) appears to be portable between different
processor architectures.

Third-Party Software Contributions The system contains
598% files comprising 25739 lines that are marked as
“software contributed to Berkeley”. These come
from individuals (Arthur Olson, Chris Torek, and Rick
Adams), as well as corporations (Computer Consoles Inc,
Excelan Inc, Harris Corp, Sun Microsystems, Inc, and Sym-
metric Computer Systems). Although the size of the contri-
butions is modest, the phenomenon is important, because it
marks the beginning of growing the system through what
evolved to become an open source software community.
By the next release (4.3BSD Reno) the third party software
contributions had swelled to 896! files, 2184552 lines,
from about 703 entities.

Timezone Handling The release incorporates a public do-
main timezone handling package developed outside Berke-
ley [64, p. 91577 The package stores the timezone change
rules into a database, allowing it to be updated indepen-
dently from the code that interprets those rules. This allows
end-users to individually configure their local timezone, and
administrators to easily update the database as new rules
come into effect. This is the approach now followed by the
majority of Unix systems.

4.14 4.3BSD Reno

The 4.3BSD Reno release (June 1990) supported virtual
filesystem implementations through the wvnode interface,
Hewlett-Packard 9000/300 workstations, and OSI network-
ing. It also incorporated a new virtual memory system
adapted from Carnegie-Mellon’s MACH microkernel oper-
ating system, a Network File System (NFS) implementation
done at the University of Guelph,*”® and an automounter
daemon. Considerable code was released by Berkeley with
a license allowing its easy redistribution and reuse.

Kernel Packet Forwarding Database The kernel provides
a special network socket domain, PF_ROUTE, that user-
level programs can use to query and manipulate its net-
work packet routing database—rtoute(4). The kernel uses
this database to act as a router by forwarding packets be-
tween network interfaces, while user-level programs, such
as routed(8) and XNSrouted(8), implement routing proto-
cols by communicating with other hosts over the network.
Following elegantly the separation of concerns principle,
this minimizes the amount of complex code that must be
maintained within the kernel, while avoiding the context
switching overhead of a user-mode routing program.

Virtual Filesystem Interface Disk operations that were per-
formed on inodes are virtualized through an object-oriented
interface of vnode operations (vnodeops).5”? A structure of
function pointers provides access to storage, with functions
such as open, read, and write, as well as to file naming
with functions such as mkdir, rename, and readdir. The
two groups were split in 4.4BSD in order to simplify the
implementation of different storage methods, such as a log-
structured filesystem [64, p. 244]. This interface is used to
implement three filesystems: UFS, the original Unix filesys-
tem; MFS, a filesystem storing files in virtual memory; and
NFS, a filesystem operating over network connections.

Database Access Methods The db(3) library and API allow
programs to store and retrieve key-value pairs in a file or
memory-resident lightweight database [113]. Elements can
be stored using btree, hashed, or flat-file data structures.
An object-oriented interface, implemented through function
pointers, provides get, put, delete, and sequential access
methods. In contrast to the lethargic adoption of the regular
expression library added in 4BSD, the provided functionality
is reused by tens of programs, with the corresponding db . h
header file included 105" times in FreeBsD 11.1.

4.15 4.3BSD Net/2

The 4.3BSD networking release 2 (June 1991) came with
a (what is now called) open source reimplementation of
almost all important utilities and libraries that used to
require an AT&T license. It also included a kernel that had
been cleaned from AT&T source code, requiring just six
additional files to make a fully-functioning system. This was
the version used by Bill Jolitz to create a compiled bootable
Unix system for Intel 386-based PCs.

Stream I/O Functions The funopen(3) family of functions al-
low C programs to access arbitrary data through the widely-
used stdio(3) interface. The object-oriented constructor-like
functions take as arguments read, write, seek, and close
function pointers and return an opaque FILE pointer that
supports all the usual operations, such as getchar(3) and
printf(3). This elegant interface can be used for provid-
ing stream-like access to compressed—zopen(3), application-
protocol—fetch(3), or encrypted data. However, the specific
interface, the few library functions that build on it, and its
GNU library equivalent—funopencookie(3), which was added
in FreeBsD 11, have not seen significant adoption.

4.16 4.4BSD

The 4.4BSD release (June 1994) came out following two years
of litigation and settlement talks regarding the alleged use of

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, AUGUST 2017 14

proprietary AT&T material. As a result of the negotiation this
release removed three files that were included in the Net/2
release, added Unix System Laboratories (USL) copyrights
to about 70 files, and made minor changes to a few others.
The release included additional work done on the system,
such as support for the portal filesystem.

Stackable Filesystems The creation of a vnode stack allows
a new filesystem type to use an existing one’s operations.
The simplest use of this concept is the null filesystem—
mount_null(8), which allows an existing filesystem’s sub-
tree to appear in an arbitrary place of the global filesystem
name space. This concept was extended in 4.4BsD/Litel
with the union filesystem—mount_union(8), which allows
the translucent addition of one (e.g. writable) filesystem on
top of another (e.g. a CD-ROM).

Generic System Control Interface The generic system con-
trol interface—sysctl(1,3,9)—provides a library function—
sysctl(3)—and an administrator utility—sysct/(8)—for exam-
ining or setting the kernel’s state. This interface replaces the
original method that involved directly accessing the kernel’s
memory space through a special file—/dev/kmem. The
sysctl facility offers significant portability, efficiency, security,
and maintainability benefits compared to the /dev/kmem
access method it replaces [64, pp. 612-614].

However, offering a standalone hierarchical view of the
kernel space through the commonly-adopted “management
information base” (MIB) abstraction, it sits at odds and
competes with alternative architectural concepts, namely
the provision of interfaces through the Unix hierarchical
filesystem, and kernel interfacing through system calls, as
could be done through the kernfs, procfs, and fdesc filesys-
tems [63, p. 238]. Kirk McKusick, a principal BSD designer
and developer, in an email to this paper’s authors explained
this choice stating that BSD users resoundingly found the
sysctl facility a far more convenient way for remote system
management compared to the hierarchical filesystem access
method. He added that the sysct! interface is also consider-
ably more efficient.

4.17 386BSD Patch Kit

386BSD was a derivative of the BSD Networking 2 Release
targeting the Intel 386 architecture developed by Lynne
and William Jolitz [45]. The 386BSD patch kit contains 171
commits associated with patches made to 386BsD 0.1 by a
group of volunteers from mid-1992 to mid-1993.

Organized Community Contributions The patch kit func-
tionality adds to the Unix architecture a mechanism for
accepting and distributing contributions coming from a
decentralized team of individuals. Unix was first distributed
with an open source license through the 4.3BSD networking
release 1 (Net/1) in November 1988. This was a subset of
the code that did not include material requiring an AT&T
license. It was released to help vendors create standalone
networking products without incurring the AT&T binary
license costs, but did not include all the material required
to run the system. This was later addressed by the 386BSD
version. However, none of the two releases offered a way
to manage third-party contributions. This essential char-
acteristic of an open source project (as opposed to open

source software) was formed more than four years after the
release of 4.3BSD Net/1. Patch kit elements contain their
changes in Unix “context diff” format, and can therefore be
applied automatically to the 386BSD distribution. Each patch
is accompanied by a metadata file listing its title, author,
description, and prerequisites.

4.18 Overview of FreeBSD Releases

The FreeBsD Project started in early 1993 with the release of
FreeBsD 1.0 to address difficulties in maintaining 386/BSD
through patches and working with its author to secure
the future of 386/BSD [114]. The focus of the project was
to support the PC architecture, appealing to a large, not
necessarily highly technically sophisticated audience [64, p.
11]. For legal reasons associated with the settlement of the
USL case, while FreeBSD versions up to 1.1.5.1 were derived
from the BSD Networking 2 Release, later ones were derived
from the 4.4BSD-Lite Release 2 with 386/BSD additions.

4.19 FreeBSD 1.1

Package Manager The software ports facility> provides
a mechanism to compile and install third-party packages
and their dependencies. It was first documented—ports(7)—
in FreeBSD 2.2.6 and is available and growing on modern
FreeBsD systems. It handles the modifications (patches) re-
quired for making a software package work under FreeBsD,
the installation of required dependencies, and the installa-
tion and de-installation of the corresponding package. The
loose coupling of packages to the operating system and
the automatic handling of dependencies, allow the FreeBSD
system to grow in functionality in diverse directions without
excessively burdening its core.

S80

4.20 FreeBSD 2.0

Process Filesystem The /proc filesystem—procfs(5)—
provides a two-level view of running processes in the form
of files appearing in the filesystem hierarchy [115]. It was
originally introduced in a different form in 4.4BSD/Lite1.58!
At its top is a list of directories corresponding to running
processes. Each process directory contains files allowing the
monitoring and control of the process’s status and state,
such as its CPU registers, memory, and resource use. The
architectural significance of the process directory is that
it supplies an alternative interface to functionality typi-
cally provided through system calls such as ptrace(2), and
(for application within a process context) getrlimit(2) and
getrusage(2).

Dynamically Loadable Kernel Modules The loadable ker-
nel module facility—Ikm(4)—allows the dynamic loading
and unloading of kernel code at runtime. It has been re-
placed in FreeBsD 3.0.0 with the similar dynamic kernel linker
facility— kidload(8), kidstat(8), kldunload(8)—to support the
dynamic linking of kernel code at boot time [116, pp. 636—
637]. Loadable kernel modules allow the provision of sig-
nificant functionality to the kernel, such as device drivers,
filesystems, emulators, and system calls. This reduces the
kernel’s default memory footprint and attack surface. The
recent (11.1) version of FreeBsD provides 9925 loadable
kernel modules.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, AUGUST 2017 15

4.21 FreeBSD 2.1

Linux Emulation Although the Linux kernel was developed
independently from the Unix systems examined here, it
follows the Unix system call API down to its numbering
scheme. Nevertheless, some of its system calls are not
directly supported by FreeBsD, while others have subtle
differences in their interface specification. In addition, its
executable file format differs from the FreeBSD one. A set
of kernel files®®? allows FreeBSD to load and run executable
programs compiled for the GNU/Linux operating system.
This is accomplished by suitably marking the corresponding
process in order to emulate the behavior of Linux-specific
system calls.

Packet Capture Library The efficient capturing and mon-
itoring of network packets is an important diagnostic fa-
cility. The packet capture library pcap®*—documented in
FreeBsD 8.0 as pcap(3)—together with the tcpdump(1) pro-
gram allow the specification of packets to be captured,
the compilation of the corresponding filter into a virtual
machine program that can be dynamically injected for ex-
ecution into the operating system kernel, and the retrieval
and analysis of the captured packets. Developed by an inde-
pendent group, the library abstracts diverse packet capture
mechanisms into a portable interface.

4.22 FreeBSD 3.0

Common Access Method I/O Subsystem The common
access method (CAM) 1/0 subsystem abstracts operations to
storage devices based on a (draft) ANSI standard. It started
by supporting SCSI and CD-ROM disks, but by the release
of FreeBsD 9.0 it evolved to also cover the commonly used
ATA and SATA disk drives [65, Section 8.1]. Its three layers
comprise (from kernel to the device) the device-specific (e.g.
SATA drive) peripheral access, the scheduling and dispatch
of I/0 commands, and the routing of commands to devices
through the host bus adapter.

4.23 FreeBSD 3.4

Graph-based Kernel Networking and User Library The
netgraph(4) subsystem allows the implementation of so-
phisticated networking protocols by following a data-flow
model. Diverse network packet processing nodes are con-
nected through hook functions into a graph data structure
by means of an object-oriented interface. Netgraph nodes can
implement protocols, such as the point-to-point protocol—
PPP, ng_ppp(8)—or provide utility functions, such as the
Berkeley packet filter—BPF, ng_bpf(8). The FreeBsD 11.1
netgraph subsystem®* contains 1771 files offering netgraph
functionality through 904717 lines of code.

4.24 FreeBSD 4.0

OpenSSL Framework The OpenssL—secure sockets layer
(ssL) and transport layer security (TLS) framework5—
provides two C libraries and a user command, openssl, that
allow programs and users to work with these protocols.
In addition, the framework’s elements expose a variety of
symmetric and public key encryption algorithms, message

digest functions, and certificate handling operations. The
framework’s size is considerable, comprising 1127 files
and 227118 lines of code. From an architecture perspec-
tive the framework’s incorporation is notable due to its
size, its development method (it was implemented by a
separate team), and the fact that it brings on board its own
command interface method, namely the provision of 225
sub-commands accessible from the openssl(1) command.

Jails The jail(2,8) system call and command allow the sys-
tem’s administrator to isolate a set of processes in a confined
environment, restricting the operations the processes can
perform [117]. This extends the chroot(2) system call, which
can offer a process a restricted view of the filesystem name
space, to cover the virtualization of networking, interprocess
communication, and filesystem mounting. Jails thus allow
administrators to run processes with complex or brittle re-
quirements in separate virtualized container environments,
such as those provided by Docker [118]. Jails also allow
cloud-service providers to host many clients with full ad-
ministrative access to their (virtual) host on the same server.
Such clients cannot run their own operating system, as they
might be able to do under a full-blown hypervisor, but the
service is very efficient in terms of resource utilization. In
terms of architecture, jails provide an additional lightweight
level of virtualization on top of the operating system.

Access Control Lists A library—acl(3)—provides an in-
terface for extending the traditional Unix user/group/all
read /write/execute discretionary access control model with
access control lists (ACLs). Later releases add support for
ACLs in the UFS filesystem®® and for the finer-grained
permissions of NFSv4.5% In the current FreeBsD 11.1 version
ACLs allow the specification of more than a dozen permis-
sions for an arbitrary number of principals (users or groups).

4.25 FreeBSD 5.0

Symmetric Multiprocessing The kernel’s code can run on
multiple processors or CPU cores by synchronizing access
to shared resources through a hierarchically ordered set of
locking primitives [64, p. 93]. A large part of this extensive
change involves the addition of 3 764! mutex-based thread
synchronization calls, which exist in 7.3 percent of the
kernel’s 48731 source code files.

Modular Disk I/O Request Transformation Frame-
work The GEOM modular disk 1/0 request transforma-
tion framework—geom(3,4,8)—allows storage subsystem re-
quests to be transformed in order to support disk partition-
ing, aggregation, encryption, journaling, and 1/0 statistics
collection. It is designed around a scheme where each func-
tionality (e.g. striping) is implemented in a separate class.
Object instances with provider and consumer interfaces are
connected in a directed acyclic graph, which forms the
transformation layers.

Mandatory Access Control The mandatory access control
framework—imac(4)—supports fine-grained control of a sys-
tem’s security policies through diverse pluggable policy
modules. Examples of supported policies include multi-
level security [119], low-watermark, Biba [120], and process
partition. The kernel associates policy-agnostic labels with
filesystem objects, network interfaces, terminals, and users.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, AUGUST 2017 16

This then allows the relevant kernel subsystems (filesystem,
network, IPC, process management, VM) to obtain access
control permissions from the framework, and inform it
regarding objects’ life cycle events [65, Section 5.10].

Pluggable Authentication Module The pluggable authen-
tication module (PAM) architecture provides a way to im-
plement and abstract diverse low-level user authentication
methods, while presenting client programs with a single
high-level API—pam(3). In addition to authentication, the
library supports account, session, and password manage-
ment. Retrofitting the Unix authentication system with PAM
simplifies the introduction of sophisticated authentication
methods, such those using one-time passwords and di-
rectory access, through the installation of corresponding
modules.

4.26 FreeBSD 5.3

Streaming Archive Access Library More than a dozen
ways to package multiple files into a single one have
become widespread over the past half century. Typically
each format is associated with corresponding packaging
and compression programs, such as ar(1), tar(1), cpio(1),
gzip(1), compress(1), or bzip2(1). The archive(3) access library
consolidates these disparate formats. It allows programs
using it to read and write most common archive formats,
interfacing between an archive’s files and those resident on
a filesystem.

Miniport Driver Wrapper A kernel facility and an appli-
cation program allow the use of network interface hard-
ware device drivers conforming to the Microsoft Windows
Network Driver Interface Specification (NDIS) miniport API
to be used under FreeBsD. Thus, binary (compiled code)
components developed for a radically different operating
system can become FreeBSD device drivers. This mechanism
addresses the difficulty of building or obtaining FreeBSD-
specific device drivers for network interfaces.

4.27 FreeBSD 6.2

Basic Security Module Auditing The Basic Security Mod-
ule Auditing (BsM) facility comprises kernel changes,
system calls—audit(2), a library libbsm(3), configuration
files—e.g. audit_control(5), a binary file format—audit.log(5),
and support programs—praudit(1), auditreduce(1), audit(8),
auditd(8)—to generate and process streams of records that
are required for security auditing. The audited events in-
clude both kernel-level events, such as filesystem or net-
work accesses, and application-level events, such as a user’s
authentication [65, Section 5.11].

4.28 FreeBSD 7.0

Zettabyte Filesystem The Zettabyte filesystem (ZFS) is an
evolution of the 4.4BSD log-structured filesystem derived
from Sun’s OpenSolaris code base. It is based on the concept
of checkpoints, which allow the filesystem to move from
one consistent state to another [48]. Furthermore, by uti-
lizing the availability of abundant memory and processing
power resources in modern servers, it ensures data integrity

through end-to-end checksums, it offers various levels of
software RAID, and it provides massive (zettabyte-sized)
scalability through (potentially hybrid) device pooling [65,
Chapter 10]. The filesystem’s code is organized around a
layered architecture of considerable size, starting at 80 107->*
lines in FreeBsD 7.0 and growing to 205 8995 lines in
FreeBsD 11.1.

4.29 FreeBSD 7.1

Dynamic Tracing The DTrace facility, brought over from
Sun’s Solaris, builds on the reflection architectural pat-
tern [71, p. 193] to allow the monitoring of the system’s
operation through thousands of probes. The probes can be
configured and monitored through programs written in the
D domain-specific language [49]. The dtrace(1) command
executes these programs to enable the specified probes
and report the collected details. DTrace has two important
advantages over alternative approaches, such as system call
tracing, kernel counter statistics, or profiling. First, it can
monitor the whole application stack, including function
boundaries, networking, scheduling, filesystems, system
calls, and application code. Second, by installing only the
required probes through dynamic code patching its perfor-
mance impact on production systems is negligible when no
data are collected.

4.30 FreeBSD 9.0

Para-virtualized I/O A set of devices conforming to the
VirtlO specification—virtio(4)—allow efficient 1/0 in cases
where FreeBsD runs on top of a hypervisor. The provided
network, storage, and memory interfaces can eliminate the
cost of emulating legacy hardware and of memory copying
between the hypervisor and the guest operating system.

InfiniBand Support InfiniBand is a computer network com-
munications standard offering high-speed (10-300Gb/s)
and low-latency (140-2600 ns). These design decisions make
it attractive in high-performance computing applications as
well as in other areas requiring fast interconnects between
computers or between computers and storage systems. The
technology is complex and demanding. Therefore, a group
named the OpenFabrics Alliance is developing a cross-
platform InfiniBand stack for diverse operating systems and
distributing it as open source software. FreeBSD’s Infini-
Band support incorporates this large (325818'° lines) code
base.5

Application Compartmentalization The capsicum(4) oper-
ating system capability and sandbox framework allows
applications and libraries to be compartmentalized into iso-
lated components in order to reduce the impact of security
vulnerabilities. It works by allowing applications to enter
a reduced capability mode, and by offering a system call
API to restrict an application’s access to global name spaces,
such as the filesystem. For example, a potentially vulnerable
application’s processing part can be given only the right
to write to a file previously opened by another part of the
application that has retained ambient authority.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, AUGUST 2017

4.31 FreeBSD 10.0

Virtual Machine Monitor The bhyve(4,8) virtual machine
monitor allows a FreeBSD system to host instances of
other unmodified operating systems running on top of
it. Supported operating systems include FreeBsD, NetBSD,
OpenBsD, GNU/Linux, Windows, and SmartOS. At 30 391157
lines of code (rising to 62906 lines in FreeBsD 11.1) it is a
modest implementation effort, relying heavily on the virtu-
alization support offered by modern CPUs and supporting
hardware.

Fast User Space Raw Packet Processing The netmap(4)
framework [121] provides an API through which user space
applications can access and inject packets associated with
network interfaces, the system’s network stack, or the vale(4)
virtual switch. Through direct synchronized access to the
kernel’s corresponding ring buffers, applications avoid the
overhead of data copying and can thus process millions
of packets per second. This allows FreeBSD systems to
implement network devices such as routers, switches, and
firewalls [65, Section 13.8].

4.32 FreeBSD 11.0

Network Blacklisting The blacklistd(8) daemon listens from
other networking daemons for notifications regarding suc-
cessful or failed connection attempts. The blacklistd.conf(5)
configuration file specifies the conditions under which the
blacklist daemon will setup the system’s packet filter to
block connections associated with ports on which abu-
sive behavior has been detected. The libblacklist(3) library
implements the protocol for communicating between the
daemons.

5 QUANTITATIVE RESULTS

From 1970 until today the system’s source code grew by
three orders of magnitude, from 13 thousand to more than
ten million lines of code. Is this growth rate reflected in
terms of the number of features? What types of features are
responsible for the main growth and what does their growth
rate look like? What are the outliers and how can they
be potentially explained? Is the size growth accompanied
by a growth in code complexity? In order to answer these
questions, as aforementioned in Section 3.3, we used the
system’s reference documentation as well as source code
analysis.

5.1 Feature Growth

We analyzed the system’s reference documentation rather
than other categories of features (e.g. the system partitions
as shown in Figure 5 or Figure 6), because its structure has
remained essentially unchanged. Specifically, throughout
its lifetime, the Unix reference documentation is divided
into nine sections. In this study we ignore two: Section 6,
which has evolved to document a few games, and Section
7, which documents miscellaneous elements ranging from
the ASCII character set, to email addresses, to formatting
macros, to the system’s directory hierarchy. The remaining
seven sections are listed in the first two columns of Table 4.

1000

800

600

User commands

400
350
300
250
200
150
100

50

System calls

8000
7000
6000
5000
4000
3000
2000
1000

12}
c

C library functio

900
800
700
600
500
400
300
200
100

Devices

200

150

100

File formats

50

600

500

400

300

200

System commands

[N
o
o

1000

Kernel interfaces

[$)]
o
o

0

17

—

-iiiiiiiipmﬂﬂﬂﬂﬂ(

A

]

ul

CUOTOOTENS>OT ANM P OO NEOONTNTO00009900
>>>>>>0>0W0n ¥ 25 goccfE~novyLeocccsssaa
565555050200 snAatrzonsLaonNQddn T BONOHO -
LLLLLL e e Rl L L N X a7 R Ya YaTa falaVa Vo hapy
TS38SS § o <OARLTNNA PNDRASFNNNNNDND DA
YYoon— o0 [5X%)
DHODNODN O [a) < 0 0 o0 Apo@XONONOOMNMm
VOOV DDY O A20RBns L Lo DOODO DO MM
rereee o 2 Zaa Aruro RRooooo0v00
maoao @ fr (e TR T g
2 fragi
©
=]
3e]

Fig. 3. Evolution in the number of feature types across key releases

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, AUGUST 2017 18

TABLE 4
Number of Documented Features in Current Operating Systems

Section Description FreeBSD macOS OpenBSD Solaris Ubuntu Windows
1 User commands 700> 1352 Te0 355001 2169162 1739 163 N/A
2 System calls 370L64 252 165 271L66 236L67 440 L68 L6
3 Clibrary functions 7280170 10186 7' 4927172 769317 405174 } 6001
4 Supported devices 90775 46 170 96477 402V78 4693170 N/A
5 File formats 191180 192 181 120182 245183 171 L84 N/A
8 Administration commands 579185 661 186 365887 89488 576189 46190
9 Kernel interfaces 19361 N/A 903192 1534M3 7434 194 N/A

The evolution in the number of their features is illustrated
in Figure 3.

As we can see in the corresponding figure, over the past
half century the Unix system grew in similar proportion
in the number of all feature types. Some outliers can be
explained by constraints or choices associated with partic-
ular releases. For example, the decrease in the number of
commands in 386BSD is probably due to the fact that this
release shoehorned a system that was distributed through
tapes to run on VAX minicomputers into one that was dis-
tributed through floppy disks to run on PCs. Over the same
period the system got released as open source software,
which resulted in releases that purged items containing
proprietary code. These were then gradually reimplemented
or replaced with open source alternatives. The temporarily
high number of user commands in 4.3BSD Reno stems from
the inclusion of diverse user-contributed programs, such as
Emacs, USENET News, and the X-Window System. These
were later distributed as separate packages.

Turning our attention to specific feature types we see that
growth has not been uniform across them; there is evidence
of interesting trends for which we can hypothesize specific
reasons. Growth in user and system administration com-
mands as well as file formats has been relatively uniform.
This can be expected, if we regard an operating system as a
platform hosting (an expanding set) of programs and files.

The evolution in the number of system calls tells a
more interesting story. There are two periods of relative
stability. One over the Research Unix editions, which can be
understood if one considers that its developers took pride in
demonstrating “that a powerful operating system for inter-
active use need not be expensive either in equipment or in
human effort” [36]. Consequently, they avoided bloating the
kernel with functionality of marginal utility. A subsequent
rise in the number of system calls followed by stability can
be seen over the Berkeley releases. The rise can be attributed
to research targetting specific areas: networking, filesystems,
and interactive use. The subsequent stability marks a con-
solidation phase where the developed interfaces are used
by an expanding number of user and system administration
commands. The continuous rise in the number of system
calls over FreeBSD releases can be attributed to a community
keen on operating system innovation, and, maybe, one in
which a large number of volunteer developers are eager to
leave their mark on the kernel.

The evolution of C library functions tells a similar story.
A restrained timidity over the Research Unix editions re-
sulted in a core set of functions, most of which were later
standardized as the C programming language library. Berke-

ley releases broke that tradition by introducing many new
functions to accommodate newly provided functionality.
That period’s attitude seems to be that if some functionality
is generally useful, then it should be made available as a
library. This established a tradition for providing library
interfaces to access the system’s files and to package into
libraries complex functionality, such as regular expression
matching and embedded database support. Having broken
the taboo of limiting the C library to a core set of portable
functions, the rise in the provided functionality continued
with the FreeBsSD releases, resulting in a substantially larger
number of library functions. Modern frameworks, such as
.NET, Jakarta EE, and Python, have followed this lead by
providing extensive support for diverse functionality.

Changes in the number of supported devices were
probably driven by external factors, namely availability of
such devices, demand for using them, and resources for
implementing their driver code. The drop in the number of
devices from 386BSD to FreeBsD 1.0 stems from the cleanup
of obsolete non-working device drivers: from the acc(4)
local/distant host DARPA IMP interface to the vx(4) dialup
communications multiplexor.

Documentation for the kernel APIs (Unix Reference Man-
ual Section 9) was only introduced in the late 1990s, so there
is less to observe in the corresponding Figure. The initial rise
probably stems from a vigorous effort to document existing
interfaces, while subsequent growth may have been organic.

To judge in context the evolution of supported fea-
tures, the remaining columns of Table 4 list the number
of documented feature types in diverse current operating
systems: FreeBsD 11.1.0, Apple mac0s 10.13.3, OpenBSD 6.3,
Oracle Solaris 11.3, Ubuntu Linux 16.04.5 LTS, and Microsoft
Windows 10 (build 16299). The numbers were obtained as
follows: for FreeBSD and OpenBSD by processing the source
code and Makefiles;'® for Solaris by processing the indices
of Oracle’s on-line reference library;”™*7 for Windows
by processing the source code of the Windows Server
documentation® and the HTML markup of the Windows
UAP umbrella library index;”'*® for Ubuntu and macos by
counting the number of manual page files or processing
the kernel’s source code in servers offered by the Travis
CI continuous integration platform'“® through a small
project constructed for this purpose.!’ To keep the figures

7. https:/ /docs.oracle.com/cd /E53394_01/

8. https:/ /github.com/MicrosoftDocs /windowsserverdocs/

9. https:/ /docs.microsoft.com/en-gb /windows/desktop /apiindex/
windows-umbrella-libraries

10. https:/ /travis-ci.org/dspinellis /documented-facilities /builds /
459375741

11. https:/ / github.com/dspinellis/ documented-facilities

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, AUGUST 2017 19

comparable we tried to provide numbers that reflect server
rather than desktop installations.

As is evident from the table, the number of feature types
is similar in magnitude across systems with different his-
tories, architectures, or evolutionary paths. Where marked
differences exist these can be readily explained. For exam-
ple, in the case of device drivers, the differences stem either
from the use of standardized hardware (macOS) or from
widespread adoption (Ubuntu Linux). Also, because the
Windows API does not clearly distinguish between kernel
interfaces and user-level utility functions, the entry points
of its API appear in the table spanning the rows for system
calls and for C library functions. None of the systems ex-
hibits the economy evident in, say, the 1979 Seventh Edition
Unix. We interpret this as a sign that requirements from a
modern operating system drive the corresponding essential
complexity (and sometimes the accidental complexity). The
observed quantitative rise in supported feature types is not
coincidental, but a response to environmental pressures.

5.2 Cyclomatic Complexity

We also looked at the cyclomatic complexity evolution of
the system’s two major partitions the kernel-space code
(C source code files—those with a .c suffix—nowadays
residing under the sys directory), and the user space code.
For the latter, we further distinguish between the libraries
shared among multiple programs (C files in 1ib), and
the user, administrator and system commands (all other
C files). The reason for this distinction is that libraries are
reused by other programs and therefore required to be more
maintainable (have lower complexity).

Figure 4 shows the cyclomatic complexity evolution
trends over time for the three aforementioned types. In
broad terms this follows a steep rise followed by a gradual
decline. A possible explanation for the rise could be that
improved technology (e.g. 9600 baud glass terminals replac-
ing 110 baud teletypewriters) might allow the adoption of
more complex program structures [15]. The curve’s steep-
ness could be explained by the rapid introduction of these
technologies, which enjoy the exponential growth benefits
associated with Moore’s Law [122]. The gradual fall could
correspondingly be attributed to corrections addressing ex-
cessive complexity, implemented by adding better new code
or by refactoring existing code. The reason behind such
changes could be to satisfy the implicit quality requirements
associated with the construction of a large and sophisticated
software artefact [123]. This hypothesis is corroborated by
the fact that the cyclomatic complexity of the three areas
follows their relative criticality and importance. Is is lower
for the kernel where a fault can bring down a complete
system, as well as for the libraries where a problem can
affect many programs. In fact the curves for the kernel and
the libraries are surprisingly similar, especially after the
mid-1990s. In contrast, it is higher for user, administrator
and system commands where the code is isolated in separate
processes and where problems typically affect only a single
command. However in all three cases the mean cyclomatic
complexity at the end of the studied period is around 6,
which is considered overall rather low [124, pp. 342-344]
for such a complex long-lived system.

An enabling factor for battling cyclomatic complexity
may be advances in CPU clock speeds and in compiler
technology, such as the inter-procedural analysis offered by
GCC and later LLVM [125]. These have allowed developers
who crammed code into a single function, in order to avoid
the performance penalty of function calls, to write smaller,
more modular functions.

To put the evolution of cyclomatic complexity into per-
spective, the bottom part of Figure 4 illustrates the corre-
sponding complexity evolution of the GNU coreutils, the
GNU C library, and the Linux kernel, juxtaposed with that
of the Unix commands, library, and kernel respectively. We
note that the measured periods are not identical, as the top
part starts from the mid-70s, while the bottom part starts
from 1995 or slightly earlier; we thus leave out the first
two decades of Unix in our comparison. The resemblance
in each pair of curves is striking: the same initial incline and
subsequent descent is observed.

We conjecture that the inverted U-curve in the
GNU/Linux case is caused by reasons similar to Unix:
steadily improving hardware capabilities throughout the
80s and 90s lead to the incline, followed by corrective actions
to improve quality, as the complexity started to become
overwhelming. It appears that the GNU/Linux community
exhibits a similar maturity to that of FreeBSD [123], striv-
ing for code quality through re-working and refactoring
the code. The actual cyclomatic complexity also fluctuates
around the same figures: 7 to 9 for the commands, 6 to 7 for
the libraries (after 1995), and 4.5 to 7.5 for the kernel.

There are however some pronounced differences as well.
While the Unix commands had their complexity gradually
reduced until the end of our measurements, reaching 6.5, the
GNU user-space commands stabilized after 2010 at approx.
8. The reason behind this may be lower stability and main-
tainability requirements regarding individual commands
compared to the monolothic kernel. Also, the peak in the
two curves differs by about a decade, which indicates that
the GNU/Linux community started to incorporate quality
improvement guidelines and practices later than the Unix
community. Moreover, the GNU C library had a second pe-
riod of increasing complexity, albeit much more moderate.
This may indicate again a creeping lack of attentiveness
regarding design quality as the lessons of the preceding
drive were forgotten and the effort to adjust to a new
version of C (C11). Finally, regarding the complexity of the
kernel, while reaching its climax in the mid-90s in both
cases, the Linux kernel complexity improved at a faster rate,
dropping even lower than its starting point. This indicates a
strong drive in the Linux community to refactor and remove
technical debt, probably lead by key members in the kernel
development team.

6 TOWARDS AN INITIAL THEORY OF OPERATING
SYSTEM ARCHITECTURE EVOLUTION

Our findings from the qualitative and quantitative analy-
sis are interesting not just for the case of Unix, but for
similar operating systems. Thus, they can form the basis
to establish an initial theory on how the architecture of
operating systems evolves. Building theories in Software
Engineering has been argued, among others, as a necessary

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, AUGUST 2017 20

Commands
10- 10-

Library

4 4
1980 1990 2000 2010 1980 1990
10 10
.
8 " 8
6 6
4 4

1990 2000 2010 1990

Kernel

2000 2010 1980 1990 2000 2010

2000 2010 1990

2000

2010

Fig. 4. Mean cyclomatic complexity of code over time. Top: for this study’s Unix systems’ user-space commands, C libraries, and kernel. Bottom: for
the GNU coreutils user-space commands, the GNU C library, and the Linux kernel

means to analytically generalize results, thus going beyond
individual findings [126]. To build this theory, we follow
the first four steps, as prescribed by Sjoberg et al. [127]. We
thus we derive: constructs, which are the main entities of
the theory; propositions, which establish relations between
the constructs; explanations, which shed further light into
the propositions; and scope which determines where the
theory applies. The fifth step, which entails testing the the-
ory through further empirical studies is regarded as future
work.

The constructs in our case include the main concepts from
the research questions, i.e., architecture decisions, evolution,
system lifetime, features, size and complexity. They also
extend to technical debt, conventions, portability, software
ecosystems and third-party systems. This set of constructs
is grounded in the collected data as described in Section 3.3
and comprises the main concepts that were derived during
the data analysis (particularly Constant Comparison - see
Section 3.4). Accordingly, the scope includes large, complex
and long-lived operating systems.

The derived propositions and explanations are elabo-
rated in the following sub-sections, grouped into those
concerning: a) the form and pace of architectural evolution,
b) the accumulation of architectural technical debt, and ¢)
forces for architectural evolution. Each proposition is for-
mulated as one sentence (in italics) and briefly elaborated,
followed by a paragraph with the explanation.

6.1 Form and Pace of Architectural Evolution

Proposition 1: Many core architecture decisions are taken at the
beginning of the system’s lifetime

A surprising finding of our study was the large number
of Unix-defining design decisions that were implemented

right from the very early beginning. This can clearly be seen
in the evolution timeline (Figure 1). Despite the diminu-
tive size of the PDP-7 and the First Research Edition, they
included the most important of the system calls still used
today, the notion of devices as files, the abstraction of
standard 1/0, and a tree directory structure.

The influence of the early architectural decisions is also

apparent if one compares the high level architecture (mod-
ule view) of the First Edition architectural diagram (Fig-
ure 5) with the system’s current architecture (Figure 6).!?
The system’s first-level decomposition has remained es-
sentially the same. The permanence of many early design
decisions is illustrated through highlighted items in the two
diagrams. Note that, as the current architecture diagram is
drawn at a much coarser scale, many of the First Edition
features appear in the current architecture grouped together
under an entity with the same colour. For example, the File
I/O system call box in Figure 6 includes the open, read, write,
close system calls depicted individually in Figure 5, while the
math, stdio, stdlib, and time parts of the C Standard library in
Figure 6 contain among others the colored library functions
in Figure 5.
Explanation The developers of early Unix sought to “distill
and simplify” [59] three powerful and influential operat-
ing systems: Multics, Project Genie, and CTSS [76], some
of which had already suffered from the “second system
syndrome” [128], [79, p. 463]. Consequently, the Unix de-
velopers” experience guided them to implement the system
around a few key ideas with enduring value.

12. We encourage readers to focus on the overall structure, because
many may find the text labels illegible due to their small font size. Fur-
ther details can be readily obtained by zooming in on the manuscript’s
digital version.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, AUGUST 2017 21
User Space
User commands Administrator and System Commands
[[Shell (sh)] [Program Devel [File Management] [Text Processing] [Fil] [Peripheral access El
" = - i
allls gl <]l 2 5| £ | 5 | = = | o 5 o
"""||-°||-°‘“""‘E=- -_n?,-g%g 2)l8] 8 §£§éw_u_ HE B S
SIE|NENS| ===
[Multiuser Commands| [User Messaging] [Document Preparation] [Games]
|) = || & Q « ||l £ 21 o
|l 2 & ® |) i S 5= | . 2l el =
22 g 2| 2 E|E H N =[S £
7 Library {
[Assembly Subroutines Library] [B Library]
o 3 w || @ S =l =] - =l o
s sl € S = @ FIE|L 2 (NSNS IHEN sl - 2
2l elglsll2llEs 2l 2ll2cl sl il |ENEICIEl2]ElE]ellzllzE)s
7 Kernel Space {
 System Call Interface | | Boot Loader I
3| < o = el e o || £ 2«
<Mefl=ll el £ ol = o 2 0 =l 2l E| < =N I o S £ o
sllells|l e Bl gl allell=ll<lallZllzl2lsll<liZNElENE2]lallellslZllZllalléllallz]lcileE]llz]2
HHEEEEHEHEEHEHEBRHEEHEEEEEEHEEHEHEEEEEREEE
7 [1/O Subsystem] 7 7 [Process Control Subsystem] { Legend
. A Major Component
iget
1 [Special Devices] { 7 [Filesystem] {

access

A top-layer sub-component

{ [inode layer] 7

mget

T A middle-layer sub-component §
Lollipop marks layer intefacing

Line discipline

Raw character
[Scheduler]
[Swap manager]
[Memory manager]

Raw disk

7 [block layer] {

tty

wakeup

Color marks versions' similarities

sleep

7 [A low-layer sub-component] {

{ Device Drivers |

namei

[Square brackets mark own grouping]

8
4
N

[Kernel Utility Functions] {

[Character Devices] | 1 [Block Devices] {

panic

alloc/free

-component 2

-component
-component
-component

Sub-sub-

Keyboard
Printer
Paper tape

alloc

rk: RKO3 disk

rf: RF11 disk

mem

Fig. 5. High-level architecture of the First Research Edition (1972)

Proposition 2: Most important architecture decisions survive
over the system lifetime

The number of long-lived architectural design decisions
in Unix is impressive. Of the 15596 elements docu-
mented over the past half-century 12043"%! (more than
75%) are still documented in the current edition of FreeBsD.
Most deprecated commands offer functionality that is nowa-
days available through add-on packages (number factor-
ing, form generation, voice synthesis, hyphenation, Fortran
compilation) or deal with deprecated technology (GCOS and
UUCP communication, DECtape handling). On the system
call side, the few removed ones are mainly those that have
been replaced by more general mechanisms. For example,
the functionality of the Third Edition’s signal handling
calls—cemt(11), fpe(1l), ilgins(11), and intr(II)—is nowadays
provided by the single sigaction(2) call. In contrast, device
drivers have seen a very high churn rate. This is to be
expected due to big and visible changes in hardware device
technologies; nobody nowadays uses punched card readers,
paper tape punches, dataphones, or washing machine-sized
121MB RAS80 disk units.

Moreover, we observed the longevity of not only explicit
design decisions, but also implicit ones. Specifically, we
saw that implicit design decisions that are not part of a
documented API can also survive over decades and even
influence the design of other systems. For example, the vir-
tual filesystem interface (Section 4.14) has been adopted by
the Linux kernel [129, Chapter 13], while the device driver

so-called strategy routine (Section 4.5) could also be found
in the design of Linux device drivers [130, Section 14.4.3].
Explanation The longevity of architectural decisions is
mainly due to the desire to maintain backward compatibility
and the benefits derived from it. From as early as 1977
this was instituted through—initially informal and later
formal—standardization. First, a committee sponsored by
the AT&T Bell Laboratories Computer Technologies Area
monitored and promoted the portability and evolution of
the C programming language and associated libraries [53, p.
1687]. Later, Unix standardization was formalized through
efforts such as POSIX [92], [131], [132] and the C language
standards [133], [134], [135].

Proposition 3: New architecture decisions are continuously
made, further fueling architecture evolution

Despite the influence and permanence of the early ar-
chitecture, the study also demonstrates that the Unix archi-
tecture continues to evolve significantly many years after
the system’s foundations have been cast into stone. For
example, many important architectural design decisions of
Unix, such as system portability, dynamic memory alloca-
tion, environment variables, language development tools,
little languages, and static program analysis, first made their
appearance in the Seventh Edition; ten years after the PDP-7
prototype was implemented. In more recent decades, Unix
has continued to grow significantly in size and complexity
through the addition of large third-party subsystems (see
Table 6) integrated to the system’s core features.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, AUGUST 2017

22

User Space
User commands Administrator and System Commands
Shells] Program Development] File Management] Multiuser Commands| Number Processing] Filesystem | g| User Statistics|
1\ 1\
sl NAEE NS NBE H{ua , NE 2 P e
o | | s|8]= | £ ° sl g5 & elle|lE| 3 Ele 2 il 2zl =&
LH E H als B Bl 2l el allel]l Lellels HH B Slglle 22|z & 8| 5]lg
[Text Processing [User Messaging] | [[Little Languages] | Network clients] [Document Preparation] | [| Network Servers]]
szl e slelel =<l Ilsllz]s E B 3 H H
M[mHS[HLMLH: SILELEL [lg |l 2] LEEEl el N [o -3 -4 Y AEIMIE
HEEEEE |
7 Libraries |
[C Standard] [Operating System [Peripheral Access] [System File Access Data Handiing] [Security] [internationalization] [Threads] | []
gllsllellzll 2| e _lzlellels sl 2 ™ § = 2= z 2
EEHEF[UHEH~‘E~ 1 EHEAE ARHE HHHEHBEIRREHE o3
= S| S| 8|8 %5 cllENS| S| ENE]| s w|s|le|l g siis|sll 22l gz 22|55 < sllefl 2]« £ g
H B EE E Slels]2 (I | B £ (e
slelle|e Slle)le] E w| S| &
SB[&]%
7 Kernel Space |
7 System Call Interface | [Bootstrapping]
— g = < §
) Tl E1l3 3 2 3
S ez ° gl 2
(S == - w22l £ T sl 2| =
E: 22| — = ele wll=sllell=|= EN N % || = = TIE| £
7| £ = = s ||l = 2| =) 2 £ 2 2= o || T S 5
258 2 sl Ell—(&le]z SR EIHEIE a2 l=lIZ]3 Se =
| | 4 ENENE =] 2% Slsllallzl&ll2llslgllEll=lEl2lEle]2
==& E|] ° Effls)|=] s 3 SHNENS el el SN2l E|f8]E|:E s3] €
Slisllslsllall 2 z SIZ=|2 gllsllell @l elallSlellEz]E]2]S]2
S| E|| R & &8 | | = | s | = e
ofles(f23flellelfellclTlENzZ0ENSUSISHBENEl sll20E S ElslBlBlSlzl2(5]%E
CIEzllE|Ele]e|&jz]a|ala|2=2]2Eje)|z]z]le|dfjaf2|SE|22]2]2]2
TT1/0 Subsystem] | 7 [Process Control 17
7 [Vnode, ZFS, Object, active file entries, and VM Interfaces] | 5 cpuset
T Special Devices | | [TIVMI T] T VNODE / VFS T TZFST T Socket T —| 8 "
e usl
g z Slellelle ZlEf®
= g SlL| %L a2 Efl g
g gl ollell 8 S g 2B HE TZPLT T [Network Protocols] % § ? a crypto
£ £z clZf|of[d|G|[|Z| ElS]=]| & © S |l | I S
< = 2 0 g| rman
el 2l 3 TDOMU T allallz sl TIENE]E N
s elle 7 [Buffer /page cache] T slslfg|l€|a glelz]s 2| device
TSPAT HEEE 3
=== = kproc devclass
TNETGRAPH
o T || taskque driver
SlHeENslls|l & |
shslsle]s 5[i
HEE I E sl
2| kthread wakeup
7 Device Drivers and Abstractions { ithread *lock
7 Character Devices | 7 Disk /0 (GEOM) | 7 Common Access (CAM) | 7 Network Interface Drivers | -
T s 7 Storage | 780211 layer] | 7 [Native drivers] | TNDIS wrapper | g I
= = 7 Peripheral 7 [802.11 drivers] = 1 NDIS drivers B vmem §
g 2| £ & gl ellellellB * < H
x[|=|a|lF slE=]=) s ¢ 2 P §| mutex
SIENE2] 5 gl . .8 = uma H
& = c HIE ol &l 2= z s
21E)18] 22 <2 4 = (5[oour 5| critical*
3| sl=] 5[5 & g
T Encryption/C = §7 Eoi
g N £ || mbchain condvar-
el 8 2 Transport (XPT < 2
s3] 8] 3 [Transport (XPT) 1 = e stomic*
THBA g signal
T Filesystem 7 4 8| mbuf s
— 2
g2 ol =& S8 malloc/free
lg lg K] 3 EJ Sl&|2|L2|5] 2
sll3].8 2
panic
Virtualization | o— sysctl
5
<|lg|l el & du
Elle| &5 : nvlist || dirace
| osd 2| watchdog
S| socket S| stack
3 o
mbuf_tags alg
bitset ktr
[T [Bus Virtualizations] 7]
[T [Hardware and Architecture Abstractions] 7]

Fig. 6. High-level architecture of FreeBSD 11.0 (2017)

Explanation The reason for the continuing evolution is, un-
surprisingly, new requirements. These stem from the need
to accommodate more sophisticated user programs, which
appears to be mirrored in the rise of supported C library
functions and system calls seen in Figure 3, or support
new hardware, which can be observed through the rising
number of supported devices depicted in the same figure.
Requirements can also arise from advances made by other
operating systems—work aimed at keeping up with the
Joneses, as it were.

Proposition 4: The rate of architecture decisions declines over the
system’s lifetime
Despite evidence of continued architectural evolution,

by looking at the elements listed in the evolution timeline
(Figure 1) it is also evident that the rate of it has slowed
down over the system’s lifetime in terms of new significant
design decisions introduced. One can observe three major
‘waves’: the first comprising the research editions, which
featured a significant number of major design decisions; the
second and third in the 1990s and 2000s respectively, which
featured fewer and fewer such significant design decisions.

Explanation Two plausible explanations can be given. First,
architectural changes become more difficult as the system
ages, due to the system’s increased volume and complexity.
For example, when pipes were introduced in the Third
Research Edition, the few members of the Unix team worked

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, AUGUST 2017 23

overnight to convert most of the system’s utilities into filters
(see Section 4.4). Introducing such a change in a modern
system would be orders of magnitude more difficult and
complex. Second, due to the system’s maturity, new major
or even disruptive features are seldom required—to a large
extent we are witnessing functional saturation.

6.2 Accumulation of Architectural Technical Debt

Proposition 5: A major source of architecture technical debt is
architecture decisions offering features that are either similar to
existing ones or remain under-used

As one might expect in a system developed over half a
century, our study also revealed symptoms of architectural
technical debt. We use the definition of technical debt from
a recent Dagstuhl seminar [136].

“Technical debt consists of design or implemen-
tation constructs that are expedient in the short
term, but set up a technical context that can make
a future change more costly or impossible. Tech-
nical debt is a contingent liability whose impact
is limited to internal system qualities, primarily
maintainability and evolvability.”
Technical debt comes in many flavors; our proposition
concerns two different types of technical debt that were
predominantly observed in Unix.

The first type refers to adding functionality that is the
same or similar to existing functionality, without removing
the existing one or merging them into a single source.
Retaining two or more competing facilities that provide
analogous functionality hurts understandability and main-
tainability. Examples include:

o the proliferation of system calls that perform
slightly different functions, such as the nine
variants for reading data—read(2), pread(2),
readv(2), preadv(2), recv(2), recvfrom(2), recommsg(2),
recomsg(2), sctp_generic_recvmsg(2)—and a similar
number for writing data, or the 14 ..at siblings
of existing system calls—bindat(2), connectat(2),
fstatat(2), faccessat(2), linkat(2), mkdirat(2), mkfifoat(2),
mknodat(2), openat(2), readlinkat(2), symlinkat(2),
unlinkat(2), renameat(2) [137];

o the support of multiple logging mechanisms: writing
to plain files in /var/log, logging via syslogd(8),
process accounting via act(2), and BSM auditing via
auditd(8) (Section 4.27);

o the coexistence of the traditional user-group-others
file permission settings, with access control lists (Sec-
tion 4.24), and a separate mandatory access control
framework (Section 4.25); and

o the coexistence of two multitasking primitives:
threads and processes.

We found one striking example of this type of technical
debt that relates to loss of conceptual integrity. An important
innovation of the Unix operating system is the mapping
of storage devices, terminals, communication links, and
memory onto special files. According to the system’s cre-
ators, this homogeneous treatment has three advantages: it
makes the device 1/0 API similar to the file API; it allows
ordinary programs to be used on special files by supplying

their corresponding file names; and it reuses the existing
file protection mechanism on special files [138, pp. 1909-
1910]. Over time, competing approaches have breached the
conceptual integrity of this approach by not using special
files and thus losing the above advantages. For example,
the monitoring and control of the system and its processes
can be achieved following the special file approach, through
the procfs(5) filesystem (Section 4.20). However, such func-
tionality is also provided through system calls—ptrace(2),
getrusage(2), getrlimit(2), and through the dtrace(1) system.
Similarly, special files can be used to control the operating
system’s configuration, as is for example done through
Linux’s sysfs filesystem [129, 355-361]. However, most of
this functionality is implemented through numerous system
calls—e.g. acct(2), adjtime(2), auditctl(2), getfsstat(2), gettime-
ofday(2), kenv(2), mincore(2), modfind(2), procctl(2), quotactl(2),
settimeofday(2), and also through the hierarchical but distinct
sysctl interface (Section 4.16).

Explanation The main driver behind amassing similar com-
peting features is a lack of ownership regarding the con-
ceptual integrity of the whole system [79, p. 460]. As the
evolution of Unix moves between groups and individuals,
these may be more interested in leaving their mark through
new functionality than in consolidating existing work and
refactoring old code to work with incrementally improved
features. This can be seen in Figure 3, where the move from
Bell Labs to Berkeley and then to FreeBsD is marked by an
increase in the number of system calls. Furthermore, each
generation of code stewards may be hesitant to radically
change code of their predecessors. In addition, as the system
is increasingly built by bringing together code developed
by diverse teams to serve multiple projects, it becomes very
difficult to coordinate extensive refactoring changes.

The second type of technical debt has to do with com-

plicated functionality that was offered but never quite used.
This violates the YAGNI principle (‘you aren’t gonna need it’)
and incurs extra maintenance effort for functionality that is
not actually in use. Removing this redundancy and cleaning
up the system would remedy the technical debt. A typical
example of this is the socket-based IPC with its large number
of system calls (see Table 3).
Explanation This type of technical debt is almost always
inadvertent: certain architectural decisions appear sound
at a given time, but later become problematic because of
changes in the technology or the application domain. For
instance, the elaborate socket stream and datagram abstrac-
tions that were designed as part of the network protocol
API in 4.2BSD (Section 4.12) were rendered irrelevant by the
universal adoption of Internet protocols and the eclipse of
competing technologies [139, p. 87]. However, the accompa-
nying complexity still burdens the API. On the positive side,
the networking API’s generality allowed support for version
6 of the Internet Protocol to be introduced without requiring
any new system calls.

Proposition 6: The architecture technical debt is systematically
paid back despite increasing system size and complexity

The evidence of technical debt we found in Unix is
substantial and it does hurt the system’s maintainability and
evolvability. However, for a system of its size, complexity,
and age, the technical debt of Unix is impressively limited.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, AUGUST 2017 24

Usually the growth in size and complexity over a long
period of time results in incurring technical debt at an in-
creasing rate; thus most systems of similar size have become
‘big balls of mud’. On the contrary, Unix has maintained
comparatively high internal quality and does not manifest
many architectural ‘quick fixes’ or ‘workarounds’. Evidence
of corrective action following the accumulation of technical
debt is visible in Figure 4, where increases in cyclomatic
complexity are followed by a subsequent decrease.
Explanation One could argue that the system’s high overall
internal quality may be due to the dedication and excep-
tional talent of the developers who worked on the system,
coupled with the lack of commercial pressure to follow
shortcuts for the sake of expediency. However, when the
quality of the FreeBSD Unix kernel is compared against that
of three other systems (Linux, Solaris, and the Windows
Research Kernel) they all appear to be at similar levels [123].
We therefore argue that the main reason for the low tech-
nical debt is a natural selection process: the size (eight
million lines in the case of FreeBsD) and complexity of a
modern operating system kernel as well as the reliability
requirements [51, p. 1960] are such that sub-par quality is
either weeded out or the corresponding system is aban-
doned. The way stringent reliability requirements force high
internal quality can be observed in Figure 4, where the mean
cyclomatic complexity lowers as we move from stand-alone
user commands, to the C library used by all of them, to the
large monolithic kernel on which everything depends. A
counter example is the case with of Multics, which Thomp-
son has characterized as overdesigned, overbuilt, and close
to unusable [79, p. 463]; it never thrived.

6.3 Forces of Architectural Evolution

An architecture is driven by requirements but also by forces,
such as technology, organization culture, or design philoso-
phy. The following propositions concern such forces.

Proposition 7: The preference for conventions instead of enforce-
ment facilitates evolution by reducing effort and offering flexibility
The system’s developers often established and followed
lightweight conventions rather than implementing rigid en-
forcement mechanisms. In early editions, such conventions
included the grouping of related files through their names,
the setup of identifier name spaces through a prefix (Sec-
tion 4.1), the processing of directories as files, the creation
of a navigable tree directory structure for arbitrary file
links, the adoption of simple text files as a common data
format, and the use of documented file formats as a program
coupling mechanism (Section 4.2). In the Seventh Research
Edition (Section 4.8) the same principle was applied in the
setup of environment variables as key-value pairs and the
detailed documentation of the system’s directory layout.
Explanation The practice of convention over enforcement
minimized the system’s implementation effort and pro-
moted experimentation. Problems arising through undisci-
plined behavior were addressed when they truly became
insurmountable [76]. This practice was a major contributing
factor for the unusually rich functionality compared to their
code size that early Unix systems provided. The approach’s
flexibility also allowed the effortless adaptation and morph-
ing of the conventions to changing needs. We argue that,

with good taste and some discipline such an approach
can yield better results than what will result from a rigid
enforcement mechanism designed in advance for fuzzy re-
quirements. Once more, agile, descriptive approaches thrive
over prescriptive ones.

Proposition 8: Portability, due to its inherent complexity, is a
key driver of evolution

Another major force that has been driving the software
architecture is portability. A key contribution of Unix was
the implementation of an operating system that could be
easily ported between different machine architectures. In
the words of Johnson and Ritchie [54] the system should
be “easily portable unchanged” between different hosts,
but also “easy to change” so as “to take full advantage
of machines much more powerful along many possible
dimensions”. The hard portability requirements between
diverse hardware architectures and devices forced the sys-
tem’s designers to adopt numerous sophisticated methods
of abstraction in order to tame the associated complexity.
Explanation Portability has driven architecture evolution
mostly through the use of layers used to hide non-portable
functionality behind portable abstractions [50]. Early on,
the need for portability influenced the design of the sys-
tem, the C programming language, the portable C library
(Section 4.7), as well as header files (Section 4.8) and static
analysis tools (Section 4.8) [54]. Furthermore, a portability
approach adopted by Unix’s designers was to define ab-
stract machine models for C and Unix [54, pp. 2041-2046].
During the long evolution of Unix, many architecture deci-
sions were made to facilitate portability, e.g. the introduction
of the vnode interface for abstracting diverse filesystems
(Section 4.14), and the modern CAM (Section 4.22), negraph
(Section 4.23), and GEOM (Section 4.25) stacks.

Proposition 9: A sophisticated ecosystem of other operating sys-
tems and third parties constantly shapes the architecture evolution
At the organizational level, the architecture evolution of
Unix systems in general and the FreeBsD lineage studied
here in particular has been influenced by technology de-
veloped by other related systems and organizations. Fig-
ure 7% depicts how diverse Unix variants and releases
cross-pollinated one another through the adoption of code.
In addition, the ideas behind Unix have influenced even
more operating systems that were independently devel-
oped, including Android, GNU/Linux, Microsoft Windows,
Minix [140], MS-DOS, QNX, and z/0S. Some of this influence
was applied through formal standardization via the POSIX
effort [92], [131], [132] and the Single UNIX Specification.

An early influencer of Unix was DARPA, which funded
CSRG to produce 4BSD (see Section 4.11). This undertaking’s
success brought increased scrutiny, criticism regarding the
system’s performance, and, as a response, a systematically
tuned kernel released as 4.1BSD [78].

Further acknowledged third party software contribu-
tions can be traced back to 4.3BSD Tahoe (see Section 4.13).
More details regarding influences from diverse systems and
organizations can be derived by looking at individual con-
figuration management system code commits. Since 1994
commit messages in the systems studied here have often

13. Based on a diagram by Eraserheadl, Infinity0, and Sav_vas,
licensed under CC BY-SA 3.0, via Wikimedia Commons.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, AUGUST 2017

Unnamed PDP-7 operating system

1969

1971 to 1973

1974 to 1975

1978

1979

1980

1981

1982

1983

1984

1985
1986
1987
1988
1989

1990
1991

1992

1993
1994
1995
1996
1997

1998

1999
2000

2001 to 2004
2005
2006 to 2007
2008
2009
2010
2011
2012 to 2015
2016
2017

‘

BSD
1.0 to 2.0

BSD
3.0to 4.1

25

Unix
Version 1 to 4

Unix

PWB/Unix

Version 7

Unix/32V

\

Xenix

System III

1.0t0 2.3
;
sunos |
1to 1.1 System V
; W4 R1 to R2
Mach Unix Ultrix
to 3.0 (1994) @ —] -32to
,,,,,,,,, V, System V 4.5 (1995)
D) <. 0 me) LR HP-UX
~, Uni 13002 SCO Xenix < - 1.0to 1.2
IX . .
9 and 10 I *\"/386 T
(last versions BSD 4.3 ‘ System V " 2.0t0 3.0
Bell Labs) UEliee SCO Xenix || \—R%
BSD Net/1 V/386 | 30t
BSD 4.3 6.5 (2006)
Reno ~~y—7-—7"7"7(| T "YW | o~ bo______Zd
BSD Net/2 OSF/1, Tru64
1.0 (1992) to
5.1 (2012) 5“205
Nedereyy | SRR =
HP-UX
1.0to 4.0 0NgetBSDO 6to 11
.8to 1.
BSD 2 SCO UNIX UnixWare
FreeBSD 4.4-Lite 3.2.4 1.X to 2.X
.0 to Lite Release 2 = (SY;TEZT v
2.2.x NetBSD IS
penBSD 0 S .
11t 1.2 1.0t0 2.2 v Solaris
5.0 to 5.04 ‘ 51500
NetBSD 1.3 ‘
FreeBSD
3.0t0 3.2
OpenServer
(Mac OS X) AIX 5.0.5 to 5.0.7
Server 3.0to0 7.2
UnixWare
X
(System V
OpenBSD R5)
2.3t06.1 i
Mac OS X, FreeBSD NetBSD Soll%rls
0S X, 3.3to 11.x 1.3t0 7.1 OpenServer HP-UX
macOS 6.x 11i+
10.0 to 10.12 DragonFly
(Darwin BSD
1.2.1to 17) 1.0to 4.8 OpenSolaris
& derivatives
(illumos, etc.)
Solaris
L 11.0to 11.3
OpenServer
10.x

Fig. 7. A simplified diagram of Unix variants and releases related through code. The highlighted elements form this study’s examined lineage.

TABLE 5
Major FreeBSD Third-Party Influences

Source Commits LoC
TrustedBSD Project 1215 413339
NetBSD 1166 2665223
OpenBSD 726 113195
KAME 451 163874
Semihalf sp. 330 214289
DragonflyBSD 179 675906
Linux 151 109600
Qualcomm Atheros, Inc. 139 46 608
ABT Systems Ltd 133 8704
Juniper Networks, Inc. 125 66971
NetApp, Inc. 120 8044
Mlumos 97 56618
OpenSolaris 95 125503
Wheel Systems, Inc. 81 3552
Yandex LLC 64 3630
Apple, Inc. 58 13378

included an “Obtained From:” header, which allowed
us to track direct influences via the adoption of code. In
total we found™® 7685 such commits, from 1283 sources,
totaling 7742684 code lines. Sources with more than 50
commits each, are listed in Table 5.02L103 We see that
FreeBsSD has been mainly influenced by its close siblings,
such as NetBSD, OpenBsD, and DragonflyBsD, as well as
closely affiliated projects, such as the TrustedBSD and KAME
projects. Furthermore, influencers also include companies
using FreeBSD, such as Semihalf, Juniper, NetApp, Yandex,
Wheel Systems, and Apple. Finally, we also see influence
from systems that are less closely related to FreeBsD, such
as Linux, Illumos, and OpenSolaris. Additional third-party
influence comes from wholesale-integrated components (Ta-
ble 6) described in the next proposition.

The architecture evolution of Unix was also influenced
over time through many non-technical decisions and devel-
opments. Chief among them were those associated a) with

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, AUGUST 2017 26

source code availability, which initially promoted third-
party contributions and later led to organizations built
around open source software development, b) the devel-
opment of competing versions (Figure 7) and (mostly unin-
spired) efforts to combine them, and c) the movement of
people between organizations [79, p. 454], which resulted in
a cross-pollination of ideas.
Explanation A significant part of developing operating
systems takes place among a family of systems derived
from the same source code base (Figure 7) or influenced
by the same key ideas (first column of Table 5). To re-
main compatible and competitive with other operating sys-
tems, the FreeBSD team routinely imports code from them
(Table 5). Furthermore, its permissive distribution license
allows FreeBSD elements to be easily reused in derived
systems and in related development efforts, such as Apple’s
macos.

Non-technical factors were influencing Unix right from
its birth. In the 1970s AT&T was still operating under a
1956 “consent decree” [141]. Under its terms, the Bell Labs
owners, Western Electric and AT&T, were prohibited from
manufacturing and offering non-telecommunications equip-
ment and services. Consequently, AT&T could not market or
license Unix for profit; Unix was initially liberally licensed
royalty-free through simple letter agreements [77, p. 60],
and its source code became widely available. This allowed
staff at universities around the world to study its code and
contribute improvements. AT&T’s legal restrictions also left
ample room for the development of competing versions
of Unix from organizations such as USG (AT&T’s Unix Sup-
port Group), Microsoft (XENIX), Berkeley (BSD), and tens of
hardware vendors [77, p. 209-210]. Many companies lacked
resident experts to act as “arbiters of taste” [77, p. 211] in the
place of the original Unix developers. As a result, companies
involved in the so-called ‘Unix wars’ [77, p. 225] between
competing implementations were often aggressively and in-
discriminately piling up features, which were haphazardly
‘taped together’ [77, p. 211]. Then, in the 1980s and 1990s
AT&T’s licensing terms became more intricate and restrictive,
limiting the availability of Unix source code [142], which
was carefully guarded as a trade secret [93, p. 20]. These
restrictions led Berkeley’s CSRG and others to work on open
source implementations of Unix, and the emergence of a
structure that was conductive to open source development.

Proposition 10: The adoption of third-party subsystems facili-
tates evolution through reusability but incurs technical debt
Another observed force has been the adoption of many
large subsystems, which are developed by independent
efforts and periodically integrated into the released ver-
sions. Table 6% lists current ones whose size exceeds one
hundred thousand lines of code (including documentation
and tests). With the exception of DTrace and ZFS, which
are deeply integrated within the FreeBSD source code tree,
the other 90M% subsystems reside in two separate direc-
tories®®*5% and can be easily upgraded as new upstream
versions are released. In contrast to the FreeBSD ports(7),
the subsystems in these directories form an integral part
of the operating system, and are typically required for its
construction and operation. Many of these subsystems offer
functionality that was in the past developed within the sys-

TABLE 6
Major Third-Party Subsystems in FreeBSD 11.1
Subsystem kLoC LoC %
llvm 3413 10.81
gce 1576 4.99
binutils 1111 3.52
ntp 873 2.76
heimdal 756 2.39
openssl 661 2.09
subversion 558 1.77
gdb 488 1.54
groff 438 1.39
ofed 404 1.28
libstdc++ 394 1.25
wpa 380 1.20
libarchive 310 0.98
sqlite3 281 0.89
ncurses 242 0.77
netbsd-tests 239 0.76
zfs 230 0.73
dtrace 205 0.65
sendmail 205 0.65
unbound 189 0.60
geclibs 187 0.59
openssh 179 0.57
byacc 150 0.48
libc++ 142 0.45
tcpdump 123 0.39
compiler-rt 121 0.38
ldns 115 0.36
tesh 109 0.34
openbsm 102 0.32
elftoolchain 101 0.32

tem’s boundaries. This practice outsources the development
of key system parts, leaving to the FreeBSD core team the
responsibility for choosing among alternative implementa-
tions, such as the choice between the GCC or LLVM as the
compiler infrastructure.

Explanation The reasoning behind adopting third-party
subsystems is simple: the increasing size and complexity
of these subsystems entails substantial effort savings for the
FreeBsD and multiple other operating system distributions,
such as GNU/Linux and macOs, that reuse them. On the
other hand, a downside of this approach is that the third-
party subsystems are developed to utilize only the least
common denominator functionality of all operating systems
that host them. Consequently, each operating system that
adopts them also inherits some technical debt: providing
functionality that might be required by some third-party
packages requires the coordinated addition of this facility by
all operating systems where the third-party software runs.
This makes it more likely for each third party tool to dupli-
cate some required functionality (resulting in redundancy)
in a slightly different manner (damaging understandability).

Proposition 11: Large subsystems form their own architecture,
independently of the architecture of the encompassing system

We have observed a strong force towards federating the
architecture. Many large subsystems, such as the Graph-
based Kernel Networking and User Library (netgraph—
Section 4.23), OpensSL Framework (SSL—Section 4.24),
Mandatory Access Control (MAC—Section 4.25), Plug-
gable Authentication Module (PAM—Section 4.25), Modu-
lar Disk 170 Request Transformation Framework (GEOM—
Section 4.25), Basic Security Module Auditing (BSM—
Section 4.27), Zettabyte Filesystem (ZFs—Section 4.28), and

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, AUGUST 2017 27

Dynamic Tracing (DTrace—Section 4.29), have their own
architecture, with distinct principles, layers, components,
plug-in mechanisms, subcommands, design patterns, and
conventions. Some of these constituent structures can be
observed in Figure 6.

Explanation The main reason for this phenomenon is that
the size and complexity of Unix may have grown way
beyond the point by which it can be maintained as a
monolith (see Table 1). In addition, many subsystems are
now independently developed by third parties (see Table 6).
This makes it difficult to coordinate their architecture with
that of the main part of FreeBSD.

7 THREATS TO VALIDITY

Our study is subject to limitations that can be categorized
into construct validity, external validity, and reliability fol-
lowing the guidelines of Runeson et al. [67]. Internal validity
is not a concern for this study because we did not examine
causal relations [67].

7.1 Construct Validity

This type of validity concerns to what extent the studied
items really represent what the researchers aim at according
to the research questions [67]. In our case, the research ques-
tions inquire about the main architectural design decisions
of Unix over time, as well as the evolution of the system’s
size and complexity. Regarding the former, we classified as
architectural design decisions some of the most significant
architectural components, connectors, patterns, and princi-
ples [69], [72]. To mitigate a potential mis-interpretation of
architecture design decisions, the first author independently
performed the constant comparison, and the second author
controlled the coded design decisions in a second iteration.
In case of disagreement, the two authors discussed until a
consensus was reached; several architectural design deci-
sions were removed as a result of this process.

Another potential risk regards whether we were ex-
haustive during data collection: i.e., whether we may have
missed any significant architectural design decision and at
the same time whether all reported architectural design
decisions are significant. This risk cannot be completely
mitigated as the significance of architecture design deci-
sions is to a large extent subjective. However, our data
source triangulation did help in spotting those architectural
design decisions that were given attention by more than
one data source: decisions derived from the code and the
Unix documentation that were also prominently discussed
in books and recollections of Unix pioneers, were given
priority in our selection process. Furthermore, even if we
cannot claim exhaustiveness, we used an extensive amount
of data sources to increase the chances of reaching correct
decisions.

Regarding the quantitative results, the size of the sys-
tem is measured in terms of number of features (e.g. user
commands or system calls), and complexity is measured
in terms of cyclomatic complexity. While these may not
be unique ways to measure size and complexity, they are
certainly valid ones [124]. Moreover, both the architectural

feature data set and the tool used for measuring cyclo-
matic complexity are based on published peer-reviewed re-
search [15], [74] thus partially mitigating threats associated
with the validity of the measurement instrument.

7.2 Reliability

This type of validity concerns to what extent the data
collection and analysis depend on the actual researchers.
This risk has been partially mitigated as the coding was per-
formed iteratively by the first author, with the second author
controlling the results. However we need to acknowledge
that the first author has decades of Unix experience. While
this has been instrumental in understanding the details of
the object of study and subsequently performing the coding,
it may have introduced a certain bias on selecting the archi-
tectural design decisions (an expert may not be able to look
at the system objectively and may be biased regarding the
importance of the different design decisions). Again, data
source triangulation has helped to partially deal with this
bias, as we made sure that all selected architectural design
decisions were described in more than one data source—
typically documentation and source code. Moreover the
reliability of the study is strengthened by being open and
explicit about the process of data collection and analysis,
and publishing online or in this paper’s supplement all used
tools and data.

7.3 External Validity

This type of validity concerns whether the findings can be
generalized to other cases and contexts [67]. This study is
rather unique in the sense that it does not aim at providing
a general conclusion about a population (i.e., category of
systems or an application domain). In addition, the his-
tory of Unix is exceptional, with numerous stakeholders
and environments influencing its development, therefore
the validity of extending any findings to other systems is
debatable. Consequently, we do not claim that either our
qualitative or our quantitative findings should also hold for
other large operating systems. However Unix has been the
dominant operating system for decades, and its develop-
ment has strongly influenced subsequent widely-used op-
erating systems, such as GNU/Linux, mac0Os, and Android.
In that sense, particularly the qualitative results regarding
the architecture design decisions of Unix are relevant for
other operating systems, because they provide many of the
significant design decisions and accompanying rationale.

8 CONCLUSION

We looked closely into the evolution of Unix from an ar-
chitectural perspective by examining 30 core releases from
the First Research Edition to FreeBsD 11. We triangulated
data sources (source code, documentation, research papers
and books, pioneers” recollections) to extract valid and up-
to-date data. We have procured and produced a wealth of
data and made it available to the community [58], [74] for
further studies.

Our analysis yielded both qualitative and quantitative
results. The qualitative examination allowed us to estab-
lish a timeline with the most important milestones that

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, AUGUST 2017 28

shaped the Unix architecture; those milestones are detailed
as components, connectors, patterns and principles as well
as other key architecture decisions. We also discussed the
rationale of those decisions and how they affected future de-
velopments. Through the quantitative analysis we showed
the trends on size growth for the seven principal feature
types (user commands, system calls, libraries etc.), as well
as complexity. We found a uniform growth in size but
also some outliers, for which we conjectured correspond-
ing explanations. We discovered that cyclomatic complexity
grew at first, but was subsequently reduced especially for
the library and the kernel, where code quality matters the
most. Finally, we put the Unix evolution in context. First,
by comparing the number of current FreeBsD features with
that of five other current operating systems, we found a
similar magnitude, indicative of their essential complexity.
Second, by contrasting the cyclomatic complexity with the
GNU coreutils, C library and the Linux kernel, we observed
overall an inverted U-curve with some marked differences.

Based on the results, we ventured on generalizing them
by developing an initial theory on the architecture evolution
of operating systems; the theory is comprised of 11 proposi-
tions and their corresponding explanations. Numerous early
design decisions survive the test of time and are still visible
decades after their introduction. Nevertheless, innovation
continues uninterruptedly to accommodate changes in com-
puting technology and networking, although with a slower
pace as decades go by. Furthermore, architectural technical
debt creeps in mostly by retaining two or more functionally-
equivalent facilities, but also by offering complicated under-
used functionality that adds maintenance effort without
much actual value. However, architectural technical debt
does not reach critical levels, as its remediation is system-
atic despite increasing size and complexity. Moreover, the
philosophy of lightweight informal mechanisms instead of
formal prescriptive ones, the drive for portability, and an
intricate ecosystem of other operating systems and third
parties are factors that shape the architectural evolution
of large, long-lived operating systems. Nevertheless, given
the current size and complexity of Unix, its evolution can
only be sustained through the adoption of third-party sub-
systems, while many large sub-systems have formed an
architecture of their own.

Looking forward, progress in hardware and applications
will continue to exert evolutionary pressure on Unix’s ar-
chitecture on several fronts. Flash storage and universal
memory computing change how secondary storage is used
and addressed; CPUs with tens of cores require support for
finer-grained parallelism; GPU computing calls for appropri-
ate high-level abstractions; deep learning methods change
the nature of computation by elevating data into its main
determinant; security and privacy demand fresh approaches
both at the data center and at the edges; mobile and
10T devices impose demanding constraints on computing
resources, power, and real-time performance. In addition,
the operating system’s large code base and the backward
compatibility requirements of existing applications hinder
radical changes. In short, the Unix operating system archi-
tects have their work cut out.

ACKNOWLEDGMENTS

The authors thank the members of the Unix Heritage Soci-
ety!* and in particular Warren Toomey and Kirk McKusick
for preserving and making available many important early
Unix artifacts. They also thank the TUHS mailing list par-
ticipants for their input and encouragement regarding this
research. The authors are especially grateful to the anony-
mous reviewers and to Kirk McKusick, George Neville-
Neil, Warren Toomey, and Alexios Zavras, for their detailed
and insightful comments regarding earlier versions of this
document.

The research described has been carried out as part of the
CROSSMINER Project, which has received funding from the
European Union’s Horizon 2020 Research and Innovation
Programme under grant agreement No. 732223.

REFERENCES

[1] M. M. Lehman, “On understanding laws, evolution, and conser-
vation in the large-program life cycle,” J. Syst. Softw., vol. 1, pp.
213-221, Sep. 1984.

[2] I Herraiz, D. Rodriguez, G. Robles, and J. M. Gonzalez-Barahona,
“The evolution of the laws of software evolution: A discussion
based on a systematic literature review,” ACM Comput. Surv.,
vol. 46, no. 2, pp. 28:1-28:28, Dec. 2013.

[3] D. L. Parnas, “Software aging,” in Proceedings of the 16th Inter-
national Conference on Software Engineering, ser. ICSE '94. Los
Alamitos, CA, USA: IEEE Computer Society Press, 1994, pp. 279-
287.

[4] S.G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and A. Mockus,
“Does code decay? assessing the evidence from change manage-
ment data,” IEEE Transactions on Software Engineering, vol. 27,
no. 1, pp. 1-12, Jan 2001.

[5] P. Avgeriou, P. Kruchten, R. L. Nord, I. Ozkaya, and C. Seaman,
“Reducing friction in software development,” IEEE Software,
vol. 33, no. 1, pp. 66-73, Jan 2016.

[6] L. Hatton, D. Spinellis, and M. van Genuchten, “The long-term
growth rate of evolving software: Empirical results and implica-
tions,” Journal of Software: Evolution and Process, vol. 29, no. 5, pp.
e1847-n/a, 2017, €1847 smr.1847.

[7] S. Koch, “Software evolution in open source projects—a large-
scale investigation,” Journal of Software Maintenance and Evolution:
Research and Practice, vol. 19, no. 6, pp. 361-382, 2007.

[8] H. Breivold, M. Chauhan, and M. Babar, “A systematic review
of studies of open source software evolution,” in 17th Asia Pacific
Software Engineering Conference (APSEC), 2010, pp. 356-365.

[9] C.A.Conley and L. Sproull, “Easier said than done: An empirical
investigation of software design and quality in open source
software development,” in System Sciences, 2009. HICSS'09. 42nd
Hawaii International Conference on. I1EEE, 2009, pp. 1-10.

[10] J. W. Paulson, G. Succi, and A. Eberlein, “An empirical study of
open-source and closed-source software products,” IEEE Trans-
actions on Software Engineering, vol. 30, no. 4, pp. 246256, Apr.
2004.

[11] A. Capiluppi, A. E. Faria, and J. F. Ramil, “Exploring the rela-
tionship between cumulative change and complexity in an open
source system,” in Proceedings of the Ninth European Conference on
Software Maintenance and Reengineering, ser. CSMR '05. Washing-
ton, DC, USA: IEEE Computer Society, 2005, pp. 21-29.

[12] M. Aram, S. Koch, and G. Neumann, “Long-term analysis of
the development of the open ACS community framework,” in
Open Source Solutions for Knowledge Management and Technological
Ecosystems. 1GI Global, 2017, pp. 111-145.

[13] M. Godfrey and Q. Tu, “Evolution in open source software: a case
study,” in International Conference on Software Maintenance, 2000,
pp. 131-142.

[14] A.Israeli and D. G. Feitelson, “The Linux kernel as a case study
in software evolution,” Journal of Systems and Software, vol. 83,
no. 3, pp. 485-501, Mar. 2010.

14. https:/ /www.tuhs.org/

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, AUGUST 2017

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

D. Spinellis, P. Louridas, and M. Kechagia, “The evolution of C
programming practices: A study of the Unix operating system
1973-2015,” in ICSE '16: Proceedings of the 38th International Con-
ference on Software Engineering, W. Visser and L. Williams, Eds.
New York: Association for Computing Machinery, May 2016, pp.
748-759.

A. MacCormack, J. Rusnak, and C. Y. Baldwin, “Exploring the
structure of complex software designs: An empirical study of
open source and proprietary code,” Management Science, vol. 57,
no. 7, pp. 1015-1030, 2006.

A. Israeli and D. G. Feitelson, “The Linux kernel as a case study
in software evolution,” Journal of Systems and Software, vol. 83,
no. 3, pp. 485-501, 2010.

T. J. McCabe, “A complexity measure,” IEEE Transactions on
Software Engineering, vol. 2, no. 4, pp. 308-320, 1976.

D. G. Feitelson, “Perpetual development: A model of the Linux
kernel life cycle,” Journal of Systems and Software, vol. 85, no. 4,
pp- 859-875, 2012.

P. Behnamghader, D. M. Le,]. Garcia, D. Link, A. Shahbazian, and
N. Medvidovic, “A large-scale study of architectural evolution
in open-source software systems,” Empirical Software Engineering,
vol. 22, no. 3, pp. 1146-1193, Jun 2017.

M. D’Ambros, H. Gall, M. Lanza, and M. Pinzger, “Analysing
software repositories to understand software evolution,” in Soft-
ware Evolution. Berlin, Heidelberg: Springer Berlin Heidelberg,
2008, pp. 37-67.

R. Wettel and M. Lanza, “Visual exploration of large-scale system
evolution,” in 2008 15th Working Conference on Reverse Engineering,
Oct 2008, pp. 219-228.

E. Bouwers, J. P. Correia, A. v. Deursen, and J. Visser, “Quanti-
fying the analyzability of software architectures,” in 2011 Ninth
Working IEEE/IFIP Conference on Software Architecture, June 2011,
pp- 83-92.

S. C. Johnson and B. W. Kernighan, “The programming
language B,” Bell Laboratories, Murray Hill, NJ, Com-
puter Science Technical Report 8, January 1977, avail-
able online http://web.archive.org/web/20180831015050/https:
//www.bell-labs.com/usr/dmr/www /bintro.html.

S. C. Johnson, “Lint, a C program checker,” Bell
Laboratories, ~Murray Hill, NJ, Computer Science
Technical Report 65, Dec. 1977, available online

http:/ /web.archive.org/web/20160412071448 /http:/ /files.
cnblogs.com:80/files /bangerlee/10.1.1.56.1841.pdf.

B. W. Kernighan and L. L. Cherry, “A system for typeset-
ting mathematics,” Bell Laboratories, Murray Hill, NJ, Com-
puter Science Technical Report 17, May 1974, available on-
line https://web.archive.org/web/20151029232442 /http:/ /tex.
loria.fr/divers/unix-eqnl.ps.gz.

J. E Maranzano and S. R. Bourne, “A tutorial introduc-
tion to ADB,” Bell Laboratories, Murray Hill, NJ, Com-
puter Science Technical Report 62, May 1977, available
online https://web.archive.org/web/20040324013641 /https:/ /
wolfram.schneider.org/bsd /7thEdManVol2 /adb/adb.pdf.

S. C. Johnson, “Yacc—yet another compiler-compiler,”
Bell Laboratories, Murray Hill, NJ, Computer Sci-
ence Technical Report 32, Jul. 1975, available online

https:/ /web.archive.org/web/20170810013946 /https:/ / www.
isi.edu/~pedro/Teaching/CSCI565-Fall15/Materials/ Yacc.pdf.
M. E. Lesk, “Lex—a lexical analyzer generator,” Bell
Laboratories, Murray Hill, NJ, Computer Science Technical
Report 39, Oct. 1975, available online https://web.archive.
org/web/20040324060316 /http:/ /wolfram.schneider.org:
80/bsd/7thEdManVol2/lex/lex.pdf.

B. W. Kernighan, “UNIX for beginners,” Bell Laboratories,
Murray Hill, NJ, Computer Science Technical Report 75,
Feb. 1979, available online https://web.archive.org/
web/20170711222622 /http:/ /wolfram.schneider.org/bsd/
7thEdManVol2 /beginners /beginners.pdf.

R. Morris and K. Thompson, “Password security: A case
history,” Bell Laboratories, Murray Hill, NJ, Computer
Science Technical Report 71, Apr. 1978, available online https:
/ /web.archive.org/web/20180317102420/http:/ /wolfram.
schneider.org/bsd/7thEdManVol2 /password / password.pdf.

S. I. Feldman, “Make—a program for maintaining computer
programs,” Bell Laboratories, Murray Hill, NJ, Computer
Science Technical Report 57, Apr. 1977, available online

[33]

[34]

[35]

[36]

[37]
(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

(51]

[52]

(53]

(54]

[55]

[56]

29

https:/ /web.archive.org/web/20040805040247 /http:/ /
wolfram.schneider.org:80 /bsd /7thEdManVol2 /make /make.pdf.
B. W. Kernighan, “A typesetter-independent TROFF,” Bell Labo-
ratories, Murray Hill, NJ, Computer Science Technical Report 97,
1982.

AT&T, Ed., UNIX System Readings and Applications. Englewood
Cliffs, NJ: Prentice Hall, 1978, vol. I, The Bell System Technical
Journal. Vol. 57, No. 6, July-August 1978.

, UNIX System Readings and Applications. Englewood Cliffs,
NJ: Prentice Hall, 1987, vol. II, AT&T Bell Laboratories Technical
Journal. Vol. 63, No. 8, October 1984.

D. M. Ritchie and K. Thompson, “The UNIX time-sharing sys-
tem,” Communications of the ACM, vol. 17, no. 7, pp. 365-375, Jul.
1974.

K. L. Thompson, “Reflections on trusting trust,” Communications
of the ACM, vol. 27, no. 8, pp. 761-763, Aug. 1984.

B. W. Kernighan, “PIC—a language for typesetting graphics,”
Software: Practice and Experience, vol. 12, pp. 1-21, 1982.

J. L. Bentley, L. W. Jelinski, and B. W. Kernighan, “CHEM—
a program for phototypesetting chemical structure diagrams,”
Computers and Chemistry, vol. 11, no. 4, pp. 281-297, 1987.

R. Pike and K. Thompson, “Hello world,” in USENIX Technical
Conference Proceedings, D. Geer, Ed. Berkeley, CA: USENIX
Association, Winter 1993, pp. 43-50.

R. Pike, D. Presotto, S. Dorward, B. Flandrena, K. Thompson,
H. Trickey, and P. Winterbottom, “Plan 9 from Bell Labs,” Com-
puting Systems, vol. 8, no. 2, pp. 221-254, 1995.

O. Babaoglu and W. Joy, “Converting a swap-based system to
do paging in an architecture lacking page-referenced bits,” in
Proceedings of the Eighth ACM Symposium on Operating Systems
Principles, ser. SOSP '81. New York, NY, USA: ACM, 1981, pp.
78-86.

M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry, “A fast
file system for UNIX,” ACM Transactionsa on Computer Systems,
vol. 2, no. 3, pp. 181-197, Aug. 1984.

R. Sandberg, “The design and implementation of the Sun net-
work file system,” in USENIX Association Conference Proceedings.
Berkeley, CA: USENIX Association, Jun. 1985, pp. 119-130.

W. F. Jolitz and L. G. Jolitz, “Porting UNIX to the 386: A practical
approach. Designing a software specification,” Dr. Dobb’s Journal,
vol. 16, no. 1, Jan. 1991.

W. R. Stevens and].-S. Pendry, “Portals in 4.4BSD,” in USENIX
1995 Technical Conference Proceedings. Berkeley, CA: USENIX
Association, Jan. 1995.

M. K. McKusick and G. R. Ganger, “Soft updates: A technique
for eliminating most synchronous writes in the fast filesystem,”
in Proceedings of the USENIX 1999 Annual Technical Conference,
Freenix Track,]. Hubbard, Ed. Berkeley, CA: USENIX Associa-
tion, Jun. 1999, pp. 1-18.

J. Bonwick, M. Ahrens, , V. Henson, M. Maybee, and M. Shel-
lenbaum, “The zettabyte file system,” in FAST 2003: 2nd Usenix
Conference on File and Storage Technologies. USENIX Association,
Apr. 2003, work-in-progress report.

B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal, “Dynamic
instrumentation of production systems,” in Proceedings of the
USENIX 2004 Annual Technical Conference, A. Arpaci-Dusseau and
R. Arpaci-Dusseau, Eds. Berkeley, CA: USENIX Association, Jun.
2004, pp. 15-28.

D. Spinellis, “Another level of indirection,” in Beautiful Code:
Leading Programmers Explain How They Think, A. Oram and G. Wil-
son, Eds. Sebastopol, CA: O'Reilly and Associates, 2007, ch. 17,
pp- 279-291.

D. M. Ritchie, “A retrospective,” Bell System Technical Journal,
vol. 56, no. 6, pp. 1947-1969, July-August 1978.

K. Thompson, “UNIX time-sharing system: UNIX implementa-
tion,” Bell System Technical Journal, vol. 56, no. 6, pp. 1905-1929,
July-August 1978.

L. Rosler, “The evolution of C — past and future,” Bell System
Technical Journal, vol. 63, no. 8, pp. 1685-1699, Oct. 1984.

S. C. Johnson and D. M. Ritchie, “Portability of C programs and
the UNIX system,” The Bell System Technical Journal, vol. 57, no. 6,
pp- 20212048, July-August 1978.

D. M. Ritchie, “The evolution of the UNIX time-sharing system,”
AT&T Bell Laboratories Technical Journal, vol. 63, no. 8, pp. 1577—
1593, Oct. 1984.

W. Toomey, “The restoration of early UNIX artifacts,” in Pro-
ceedings of the 2009 USENIX Annual Technical Conference, ser.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, AUGUST 2017

[57]

[58]

[59]

[60]
[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]
[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

(80]

[81]

[82]

USENIX'09. Berkeley, CA, USA: USENIX Association, 2009, pp.
20-26.

——, “First Edition Unix: Its creation and restoration,” IEEE
Annals of the History of Computing, vol. 32, no. 3, pp. 74-82, Jul./
Sep. 2010.

D. Spinellis, “A repository of Unix History and evolution,”
Empirical Software Engineering, vol. 22, no. 3, pp. 1372-1404, 2017.
W. Toomey, “Unix: Building a development environment from
scratch,” in Reflections on Operating Systems — Historical and
Philosophical Aspects, L. Demol and G. Primiero, Eds. ~Springer,
2017.

J. Lions, Lions” Commentary on Unix 6th Edition with Source Code.
Peer-to-Peer Communications, 1996.

M. J. Bach, The Design of the UNIX Operating System. Englewood
Cliffs, NJ: Prentice Hall, 1986.

S. J. Leffler, M. K. McKusick, M. J. Karels, and J. S. Quarterman,
The Design and Implementation of the 4.3BSD Unix Operating Sys-
tem. Boston, MA: Addison-Wesley, 1988.

M. K. McKusick, K. Bostic, and M. J. Karels, The Design and
Implementation of the 4.4BSD Unix Operating System. Reading,
MA: Addison-Wesley, 1996.

M. K. McKusick and G. V. Neville-Neil, The Design and Implemen-
tation of the FreeBSD Operating System. Reading, MA: Addison-
Wesley, 2004.

M. K. McKusick, G. Neville-Neil, and R. N. Watson, The Design
and Implementation of the FreeBSD Operating System, 2nd ed.
Addison-Wesley Professional, 2014.

E. I. Organick, The Multics System: An Examination of its Structure.
Cambridge: MIT Press, 1972.

P. Runeson, M. Host, A. Rainer, and B. Regnell, Case Study
Research in Software Engineering: Guidelines and Examples, 1st ed.
Wiley Publishing, 2012.

V. Basili, C. Caldiera, and D. H. Rombach, “Goal question metric
paradigm,” in Encyclopedia of Software Engineering. ~New York:
John Wiley and Sons, 1994, vol. 2, pp. 528-532.

R. N. Taylor, N. Medvidovic, and E. M. Dashofy, Software Archi-
tecture: Foundations, Theory, and Practice. Wiley Publishing, 2009.
J. Tyree and A. Akerman, “Architecture decisions: demystifying
architecture,” IEEE Software, vol. 22, no. 2, pp. 19-27, March 2005.
F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal, Pattern-Oriented Software Architecture, Volume 1: A System
of Patterns. Wiley & Sons, 1996.

N. Harrison, P. Avgeriou, and U. Zdun, “Using patterns to
capture architectural decisions,” IEEE Software, vol. 24, no. 4,
2007.

J. Singer, S. E. Sim, and T. C. Lethbridge, “Software Engineering
Data Collection for Field Studies,” in Guide to Advanced Empirical
Software Engineering, F. Shull,]. Singer, and D. I. K. Sjeberg, Eds.
Springer London, 2008, pp. 9-34.

D. Spinellis, “Documented Unix facilities over 48 years,” in
MSR ’18: Proceedings of the 15th Conference on Mining Software
Repositories. New York, NY, USA: Association for Computing
Machinery, May 2018.

M. Mcllroy, “Interview with Michael S. Mahoney,” Aug. 1989.
[Online]. Available: https://www.princeton.edu/~hos/mike/
transcripts/mcilroy.htm

K. Thompson, “Interview with Michael S. Mahoney,” Jun.
1989. [Online]. Available: https://www.princeton.edu/~hos/
mike/transcripts/thompson.htm

P. H. Salus, A Quarter Century of UNIX. Boston, MA: Addison-
Wesley, 1994.

M. K. McKusick, “Twenty years of Berkeley Unix: From AT&T-
owned to freely redistributable,” in Open Sources: Voices from the
Open Source Revolution, C. DiBona, S. Ockman, and M. Stone, Eds.
O'Reilly, 1999, pp. 31-46.

P. Seibel, Coders at Work: Reflections on the Craft of Programming.
Apress, 2009, ch. 12: Ken Thompson, pp. 449-483.

J. Schilling, “User maintained programs in the second edition,”
TUHS — The Unix Heritage Society mailing list, Dec.
2016. [Online]. Available: http://minnie.tuhs.org/pipermail /
tuhs/2016-December/007561.html

S. Johnson, “What sparked lint? [was: Unix sto-
ries],” The Unix Heritage Society mailing list, Jan.
2017, accessed: 2017-11-21. Archived by WebCite at

http:/ /www.webcitation.org/6v8TXa7kK.
UNIX Programmer’s Manual. Volume 1, 7th ed. Murray Hill, NJ:
Bell Telephone Laboratories, 1979.

(83]

[84]

(85]

(86]

(87]

(88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]
[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

30

UNIX Programmer’s Manual. Volume 2—Supplementary Documents,
7th ed. Murray Hill, NJ: Bell Telephone Laboratories, 1979.

S. R. Bourne, “An introduction to the UNIX shell,” in UNIX Pro-
grammer’s Manual. Volume 2—Supplementary Documents, 7th ed.
Murray Hill, NJ: Bell Telephone Laboratories, 1979.

D. M. Ritchie, “The C programming language—reference man-
ual,” in UNIX Programmer’s Manual. Volume 2—Supplementary
Documents, 7th ed. Murray Hill, NJ: Bell Telephone Laboratories,
1979.

S. C. Johnson, “Lint, a C program checker,” in UNIX Programmer’s
Manual. Volume 2—Supplementary Documents, 7th ed. Murray
Hill, NJ: Bell Telephone Laboratories, 1979.

M. E. Lesk, “TBL—a program to format tables,” in UNIX Pro-
grammer’s Manual. Volume 2—Supplementary Documents, 7th ed.
Murray Hill, NJ: Bell Telephone Laboratories, 1979.

F. Zhang, A. E. Hassan, S. McIntosh, and Y. Zou, “The use of
summation to aggregate software metrics hinders the perfor-
mance of defect prediction models,” IEEE Transactions on Software
Engineering, vol. 43, no. 5, pp. 476-491, May 2017.

C. B. Seaman, “Qualitative methods,” in Guide to Advanced Em-
pirical Software Engineering, F. Shull,]. Singer, and D. I. K. Sjoberg,
Eds. London: Springer London, 2008, pp. 35-62.

K. Thompson, “Users’ reference to B,” Jan. 1972, mM-72-1271-1,
filing case 39199-11.

L. Nyman and M. Laakso, “Notes on the history of fork and join,”
IEEE Annals of the History of Computing, vol. 38, no. 3, pp. 84-87,
July 2016.

Institute of Electrical and Electronics Engineers, IEEE Standard
for Information Technology—DPortable Operating System Interface
(POSIX) Base Specifications, Issue 7. New York: IEEE, 2017, iEEE
Standard 1003.1-2017.

D. Libes and S. Ressler, Life with UNIX. Englewood Cliffs, NJ:
Prentice Hall, 1989.

S. C. Johnson, “A tour through the portable C compiler,” in
UNIX Programmer’s Manual. Volume 2—Supplementary Documents,
7th ed. Murray Hill, NJ: Bell Telephone Laboratories, 1979.

S. C.Johnson and M. E. Lesk, “Language development tools,” Bell
System Technical Journal, vol. 56, no. 6, pp. 2155-2176, July-August
1978.

J. L. Bentley, “Programming pearls: Little languages,” Communi-
cations of the ACM, vol. 29, no. 8, pp. 711-721, Aug. 1986.

P. Hudak, “Domain-specific languages,” in Handbook of Program-
ming Languages, P. H. Salus, Ed. Indianapolis, IN: Macmillan
Technical Publishing, 1998, vol. III: Little Languages and Tools.
M. Fowler, Domain-Specific Languages. ~ Boston, MA: Addison-
Wesley, 2010.

S. R. Bourne, “The UNIX shell,” Bell System Technical Journal,
vol. 56, no. 6, pp. 1971-1990, July-August 1978.

A. V. Aho, B. W. Kernighan, and P. J. Weinberger, “Awk—a
pattern scanning and processing language,” Software: Practice and
Experience, vol. 9, no. 4, pp. 267-280, 1979.

L. E. McMahon, “SED—a non-interactive text editor,” in
UNIX Programmer’s Manual. Volume 2—Supplementary Documents,
7thed. Murray Hill, NJ: Bell Telephone Laboratories, 1979.

B. W. Kernighan and D. M. Ritchie, “The M4 macro processor,” in
UNIX Programmer’s Manual. Volume 2—Supplementary Documents,
7thed. Murray Hill, NJ: Bell Telephone Laboratories, 1979.

S. I. Feldman, “Make—a program for maintaining computer
programs,” Software: Practice and Experience, vol. 9, no. 4, pp. 255—
265, 1979.

W. N. Joy, S. L. Graham, C. B. Haley, M. K. McKusick, , and P. B.
Kessler, “Berkeley Pascal user’s manual,” in UNIX Programmer’s
Manual — Volume 2c — Supplementary Documents. Berkeley, Cal-
ifornia 94720: Computer Systems Research Group, Department
of Electrical Engineering and Computer Science, University of
California, Aug. 1983, 4.2 Berkeley Software Distribution.

W. N. Joy and M. Horton, “Ex reference manual,” in UNIX
Programmer’s Manual — Volume 2c — Supplementary Documents.
Berkeley, California 94720: Computer Systems Research Group,
Department of Electrical Engineering and Computer Science,
University of California, Aug. 1983, 4.2 Berkeley Software Dis-
tribution.

W. Joy, “An introduction to display editing with vi,” in UNIX
Programmer’s Manual — Volume 2c — Supplementary Documents.
Berkeley, California 94720: Computer Systems Research Group,
Department of Electrical Engineering and Computer Science,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, AUGUST 2017

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

University of California, Aug. 1983, 4.2 Berkeley Software Dis-
tribution.

, “An introduction to the C shell,” in UNIX Programmer’s
Manual — Volume 2¢ — Supplementary Documents. Berkeley, Cal-
ifornia 94720: Computer Systems Research Group, Department
of Electrical Engineering and Computer Science, University of
California, Aug. 1983, 4.2 Berkeley Software Distribution.

J. S. Quarterman and J. C. Hoskins, “Notable computer net-
works,” Communications of the ACM, vol. 29, no. 10, pp. 932-971,
Oct. 1986.

W. R. Stevens, Advanced Programming in the UNIX Environment.
Addison-Wesley, 1992.

A. Hume, “Grep wars: The strategic search initiative,” in Pro-
ceedings of the EUUG Spring 88 Conference, P. Collinson, Ed.
Buntingford, UK: European UNIX User Group, 1988, pp. 237-
245.

W. Joy, E. Cooper, R. Fabry, S. Leffler, K. McKusick, and
D. Mosher, “42BSD system manual,” in UNIX Programmer’s
Manual — Volume 2c — Supplementary Documents. Berkeley, Cal-
ifornia 94720: Computer Systems Research Group, Department
of Electrical Engineering and Computer Science, University of
California, Aug. 1983, 4.2 Berkeley Software Distribution.

P. Karn, “The KA9Q internet (TCP/IP) package: A progress
report,” in Sixth ARRL Computer Networking Conference, H. Price,
W. A. Linstruth, and P. L. Rinaldo, Eds., vol. 29, 1987, pp. 91-94.
M. Seltzer and M. Olson, “LIBTP: Portable, modular transactions
for UNIX,” in Proceedings of the Winter 1992 USENIX Conference,
E. Allman, Ed. Berkeley, CA: USENIX Association, Jan. 1992,
pp- 9-26.

FreeBSD Handbook, Revision 47376 ed., The FreeBSD Documenta-
tion Project, Oct. 2015.

T. S. Killian, “Processes as files,” in Proceedings of the USENIX
Summer 84 Conference. USENIX Association, 1984, pp. 203-207.
G. Lehey, The Complete FreeBSD, 4th ed., ser. O'Reilly Series.
O'Reilly Media, 2006.

P.-H. Kamp and R. N. M. Watson, “Jails: Confining the omnipo-
tent root,” in SANE "00: Proceedings of the 2nd International System
Administration and Networking Conference, May 2000.

D. Merkel, “Docker: Lightweight Linux containers for consistent
development and deployment,” Linux Journal, vol. 2014, no. 239,
May 2014.

D. E. Bell and L. J. LaPadula, “Secure computer systems: Math-
ematical foundations,” Mitre Corp., Bedford, MA, Tech. Rep.
MTR-2547, Vol. 1, Nov. 1973.

K. J. Biba, “Integrity considerations for secure computer sys-
tems,” Mitre Corp., Bedford, MA, Tech. Rep. MTR-3153, Rev. 1,
Apr. 1977.

L. Rizzo, “Netmap: A novel framework for fast packet I/O,” in
USENIX ATC "12: Proceedings of the 2012 USENIX Annual Technical

2

Conference. Berkeley, CA, USA: USENIX Association, 2012, pp.
101-112.
G. E. Moore, “Cramming more components onto integrated

circuits,” Electronics, vol. 38, no. 8, pp. 114-117, April 1965.

D. Spinellis, “A tale of four kernels,” in ICSE "08: Proceedings of the
30th International Conference on Software Engineering, W. Schifer,
M. B. Dwyer, and V. Gruhn, Eds. New York: Association for
Computing Machinery, May 2008, pp. 381-390.

H. v. Vliet, Software Engineering: Principles and Practice, 3rd ed.
Wiley Publishing, 2008.

C. Lattner and V. Adve, “LLVM: A compilation framework for
lifelong program analysis & transformation,” in CGO '04: Pro-
ceedings of the 2004 International Symposium on Code Generation and
Optimization, Mar. 2004.

D. Sjeberg, G. Bergersen, and T. Dybd, “Why theory matters,” in
Perspectives on Data Science for Software Engineering, T. Menzies,
L. Williams, and T. Zimmermann, Eds. Boston: Morgan Kauf-
mann, 2016, pp. 29-33.

D. L. K. Sjgberg, T. Dyba, B. C. D. Anda, and J. E. Hannay,
“Building theories in software engineering,” in Guide to Advanced
Empirical Software Engineering, F. Shull, J. Singer, and D. I. K.
Sjeberg, Eds. London: Springer London, 2008, pp. 312-336.

E. P. Brooks, The Mythical Man Month. Reading, MA: Addison-
Wesley, 1975.

R. Love, Linux Kernel Development, 3rd ed. Upper Saddle River,
NJ: Addison-Wesley, 2010.

D. Bovet, Understanding the Linux kernel, 3rd ed. Sebastopol, CA:
O’Reilly, 2006.

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]
[140]

[141]

[142]

31

International Organization for Standardization, Information tech-
nology — Portable operating system interface (POSIX) — Part 1: Sys-
tem application programming interface (API) (C Language). Geneva,
Switzerland: ISO, 1996, iSO/IEC 9945-1:1996 (IEEE/ANSI Std
1003.1, 1996 Edition).

, Information technology — Portable operating system interface
(POSIX) — Part 2: Shell and Utilities. Geneva, Switzerland:
ISO, 1993, iSO/IEC 9945-2:1993 (IEEE/ANSI Std 1003.2-1992 &
IEEE/ANSI 1003.2a-1992).

“American National Standard for Information Systems — pro-
gramming language — C: ANSI X3.159-1989,” American Na-
tional Standards Institute, 1430 Broadway, New York, New York
10018, Dec. 1989, (Also ISO/IEC 9899:1990).

International Organization for Standardization, Programming
Languages — C. Geneva, Switzerland: ISO, 1999, ISO/IEC
9899:1999.

, Programming Languages — C. Geneva, Switzerland: ISO,
2018, ISO/IEC 9899:2018.

P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Seaman, “Managing
Technical Debt in Software Engineering (Dagstuhl Seminar
16162),” Dagstuhl Reports, vol. 6, no. 4, pp. 110-138, 2016. [Online].
Available: http:/ /drops.dagstuhl.de/opus/volltexte/2016 /6693
M. Bagherzadeh, N. Kahani, C.-P. Bezemer, A. E. Hassan, J. Din-
gel, and J. R. Cordy, “Analyzing a decade of Linux system calls,”
Empirical Software Engineering, vol. 23, no. 3, pp. 1519-1551, Jun.
2018.

D. M. Ritchie and K. Thompson, “The UNIX time-sharing sys-
tem,” Bell System Technical Journal, vol. 57, no. 6, pp. 1905-1929,
July-August 1978.

W. R. Stevens, UNIX Network Programming: Networking APIs:
Sockets and XTI, 2nd ed. Prentice Hall, 1998, vol. 1.

A. S. Tanenbaum, Operating Systems: Design and Implementation,
2nd ed. Englewood Cliffs, NJ: Prentice Hall, 1997.

A. Lewis, “AT&T settles antitrust case; shares patents,” New York
Times, pp. 1,16, January 25 1956.

N. Takahashi and T. Takamatsu, “UNIX license makes Linux the
last missing piece of the puzzle,” Annals of Business Administrative
Science, vol. 12, pp. 123-137, 2013.

Diomidis Spinellis is a Professor in the De-
partment of Management Science and Technol-
ogy at the Athens University of Economics and
Business, Greece and director of the University’s
Business Analytics Laboratory. He is the author
of two award-winning books, Code Reading and
Code Quality: The Open Source Perspective.
His most recent book is Effective Debugging: 66
Specific Ways to Debug Software and Systems.
He has contributed code that ships with Apples
macos and BSD Unix, and is the developer of

CScout, UMLGraph, dgsh, and other open-source software packages,
libraries, and tools. From January 2015 he is serving as the Editor in
Chief for IEEE Software.

Paris Avgeriou is Professor of Software En-
gineering at the University of Groningen, the
Netherlands where he has led the Software
Engineering research group since September
2006. He is the Editor in Chief of the Journal of
Systems and Software, as well as an Associate
Editor for IEEE Software. He has co-organized
several international conferences (e.g. ECSA
and ICSA) and workshops (mainly at ICSE). His
research interests lie in the area of software ar-
chitecture, with strong emphasis on architecture

~--

modeling, knowledge, evolution, patterns and technical debt.

